Consulting, System Design, Production, **OEM Integration Services and more...**

SYS TEC, well known for its high quality Consulting & Design Services and OEM Integration Services design and production of customized more...

Do you require assistance in:

- selecting the optimal controller

- integration of a SYS TEC product into

With over 15 years of experience in • Semi-custom design based on design and assembly, our in-house layout SYS TEC off-shelf products effective customized production runs for all lot sizes, including smaller quantities.

Beyond production, we offer cost-free

Beyond production, we offer cost-free

Beyond production, we offer cost-free

Our excellent software products, and software design. Advanced design runtime kernel)

OEMable automation devices, Single and layout tools - combined with more • Integration of Single Board Computer to specified product requirements, • Board Support Packages, Software usability and handling. Furthermore we • Start-up, Test, Validation provide complementary software services and products, such as a sophisticated and advanced implementation of the CANopen protocol or an industry proven

Custom Hardware Design

- ution in numerous successfully Our development team consists of Development Tool Adaptation ged customer projects. dedicated experts in the fields of hardware (Operating Systems, IEC 61131-3

Custom Software Design

- Operating Systems
- Drivers, Board Support Package (BSP)
- CANopen and Ethernet Powerlink

- Software Maintenance Technical Support
- OPC and COM object servers

SYS TEC is well equipped to produce your custom hardware, regardless of complexity. We offer both SMD and Quality Assurance SMD assembly of miniature 0402 and production inputs.

Backed By In-House Production

We offer the same flexibility in terms • MTBF predictions of delivery time and production volume • other conformance and standards quantities for custom-specific products testing, upon request

High product quality is only one facet of customer satisfaction. Accordingly, automated production line increases our an internal quality control program expert technical and economic aspects market and its many product applications.

OEM Integration & Beyond...

sulting, design and production, SYS TEC ding on-site support and

product specification to design to OEM and evaluation to OEM production. • CE conformance production and beyond.

德国思泰电子有限公司北京代表处 SYS TEC electronic GmbH

北京市朝阳区十里堡甲3号城市广场A座都会国际大厦20层G室

电话 +86-10-51315760 传真 +86-10-51315761 邮箱 beijing@systec-electronic.com 主页 http://www.systec-electronic.cn

August-Bebel-Str. 29 D-07973 Greiz Germany

phone +49 3661 6279-0 fax +49 3661 6279-99 info@systec-electronic.com www.systec-electronic.com

System On Module

Module Overview

The PLCcore Concept

Software

Software
IEC 61131-3 Runtime

Shared Process Image

Development Kit

PLCcore

IEC 61131-3 IDE

Based on the accumulated experience of numerous customer projects, the ECUcore series combines a state-of-the-art hardware design with integrated operating system and extended software support.

Integrated	Developr	nent E	nvironme
• Enhance	م دمانهم	basad	:-++-

- Enhanced Eclipse-based integrated development environment (IDE)
- GNU C/C++ Toolchain
- Source- and assembly-level debugger
- Comprehensive user documentation in HTML and PDF

Middleware:

- CANopen® Protocol Stack Source Code
- Ethernet POWERLINK Protocol Stack Source Code

Feature Over	view					Interfaces							Roard	d featu	rec						
Teature Over	Controller	Frequency (internal)	RAM (default/ optional)	FLASH (default/ optional)	EEPROM	Ethernet	CAN	UART	USB	SPI/I ² C	optional memory expansion	Others		MMU	Watch- dog	Temperature Sensor	RTC	FPGA/PLD	Operating Temperature	Operating System	Programmable in
ECUcore-5484	Freescale MCF 5484 with ColdFire V4e Core	200MHz	64/128MB DDR-SDRAM	16/32MB (NOR)	32KiB (SPI)	2x 10/100 Mbps	2	4	-	1/1	-	driver for dot-matrix display and 4x4 keypad	•	•	•	•	•	Lattice LFE2-6 or LFE2-20 MACH XO 640	-40°C +85°C	Linux eCos*2	IEC61131-3 ^{*4} , C/C++
ECUcore-5208	Freescale MCF5208 with ColdFire V2 Core	166MHz	32/16MB SDR-SDRAM	4/8MB (NOR) 64/32MB (NAND)	32KiB (SPI)	10/100 Mbps	1	3	-	1/1	-	-	•	-	•	•	•	-	-40°C +85°C	μClinux eCos ^{*2}	IEC61131-3 ^{*4} , C/C++
ECUcore-9G20	Atmel® AT91SAM 9G20, with ARM 926EJ-S Core	400MHz	32/64MiB SDR-SDRAM	16/64MiB (NOR)	-	10/100 Mbps	1	4	2x host 1 device USB2.0	1/1	MMC*1, SD*1	SSC	•	•	•	•	•	Lattice ECP2-6	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-9263	Atmel® AT91SAM 9263, with ARM 926EJ-S Core	240MHz	64/32MB SDR-SDRAM	256 MB (NAND) 64/128MB (NOR)	32KiB (SPI)	10/100 Mbps	1	3	2x host 1 device USB2.0	2/1	MMC, on-board Micro-SD card slot	SSC, AC97 CMOS/LVDS-TFT, Video-RAM, Touch controller	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-1130	Infineon TC 1130 with TriCore V1.2 Core	150MHz	64/32MB SDR-SDRAM	128/16/32MB (NOR)	32KiB (SPI)	10/100 Mbps	4	3	1 device USB1.0	2/2	SD*1	2x MLI, 2x 16-bit CAPCOM	•	•	•	•	•	Lattice ECP2-6	-40°C +85°C	PxROS	C/C++
ECUcore-EP3C	Altera Nios II CPU on EP3C25F256I7N FPGA	50MHz oscillator	2MB SRAM	serial Flash for FPGA ST M25P80-VMN6P	32kB (SPI)	2x 10/100 Mbps openMAC and openHUB availa- ble as IP core	IP core	IP core	-	IP core	-	-	-	-	IP core	-	-	FPGA Altera Cyclon [®] III	-40°C +85°C	all Nios II compatible OS	C/C++
ECUcore-E660	Intel® Atom™ Processor E660T	1,3GHz	1/2GB DDR2	2GB (NAND) eMMC	64kB(SPI)	2x 10/100/1000 Mbps	1	4	6x host 1 device USB2.0	1/1	SD*1	2x SATA, 2x PCIe, HD-Audio	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-1797	Infineon TC 1797 with TriCore V1.3.1 Core	180MHz	1/2MB SRAM	1MB (NOR) 2/4MB CPU intern	64kB(SPI)	-	2	2	-	1/-	-	-	•	-	•	•	•	-	-40°C +125°C	PxROS	IEC61131-3 ^{*3} , C/C++
ECUcore-iMX35	Freescale i.MX357 with ARM11 Core	532MHz	64MB	128MB (NOR)	32kB (SPI)	10/100 Mbps	2	3	1x host 1OTG	1/1	2x SD*1	LCD LVDS / parallel, 1024x1024 max 24bit Touchscreen over SPI, Audio (S/PDIF)	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++

ECUcore-5484

ECUcore-5208

ECUcore-1130

ECUcore-EP3C

ECUcore-iMX35

The PLCcore SOM is an insert-ready, OEM-able single board computer subassembly, coming with a state-of-the-art operating system and IEC 61131-3 runtime kernel preinstalled on the module. Performance-optimized 32-bit CPU core components, value-adding peripherals and the fully customizable I/O layer makes the PLCcore a truly generic platform for own control application developments.

<u>Hardware</u> CPU/RAM/FLASH/FPGA

ECUcore

Insert-ready co module

PLCcore

and C/C++

What's special about it?

- No development licenses for PLCcore -based product design.
- No resale licenses when distributing PLCcore-based products.
- Insert-ready, low-EMI, 32-bit hardware platform with preinstalled productionready operating system and PLC runtime kernel.
- Supports simultaneous execution of OSlevel and PLC-level user applications.
- Integrated Development Environment (IDE) for C/C++ and IEC 61131-3 application development included.
- Seamlessly integrated CiA® 302 / CiA® 314 compliant CANopen® manager.
- The open and customizable I/O layer concept allows for adaptation to different application carrier boards.
- Comprehensive starter kit packages accelerate your PLCcore-based application development.

PLCcore Main Features

- PLC kernel supports full set of IEC 61131-3 standard function blocks.
- Transparent process data commu-
- CiA® 302 CANopen® manager bootup procedure, automatic remote node configuration from DCF files.
- Shared process image technology for easy inter-process communication and data sharing between OS-level and PLC userapplications.
- Linux operating system with preinstalled webserver, FTP server, Telnet and Login shell.
- Complete I/O driver source code and reference documentation provided with the Driver Development Kit.
- Target Visualization (optional)

Ethernet or CANopen®.

- Comprehensive vendor-specific function block library, including:
- CiA® 302 and CiA® 314 compliant CANopen® functions for PDO/SDO data communication, synchronized process data transmission, network management and error control
- CANopen® slave and manager mode
- Serial I/O and string processing
- Ethernet communication
- Non-volatile memory access • PTO/PWM, counter and encoder
- Real time clock (RTC)
- Industrial PID controller

Customer Application nication through CANopen® network • Program download and debugging via When to consider starting with a PLCcore-based design?

• If you want to create tangible solutions under extreme cost and time

Development Kit

ECUcore

Core module Base board

Driver Development

FPGA sources,

I/O driver source code.

project files

- If you want to boost a product idea yet lacking reliable market forecasts.
- If starting a conventional product design cycle does not seem to be feasible.
- If you want to make concept studies or prototyping in preparation to a fullcustom product design.
- If your product series allow for small to medium quantity only.

