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Abstract
For safety-relevant real-time applications, worst-case execution
time (WCET) bounds have to be determined in order to demon-
strate deadline adherence. For timing predictable microproces-
sors, worst-case execution time guarantees can be computed by
static WCET analysis. Hybrid WCET analysis is a solution
for covering effects from accesses to interference channels of
multi-core processors. In this article we present a seamless ap-
proach for hybrid WCET analysis that tightly couples the tools
TimeWeaver and CEDARtools. We will describe the underly-
ing concepts, illustrate the tool workflow, and discuss the appli-
cation of our approach to meet the timing requirements of the
EASA AMC 20-193 guidance.
Keywords: DO-178C, multi-core, AMC 20-193, static analysis, real-
time tracing, timing predictability, functional safety, certification

1 Introduction
In real-time systems the overall correctness depends on the cor-
rect timing behavior: each real-time task has to finish before its
deadline. All current safety standards require reliable bounds
of the worst-case execution time (WCET) of real-time tasks to
be determined.

Until recently, current industry practice—in particular in the
automotive domain [23]—oftentimes still relied on end-to-end
measurements. However, the timing information obtained with
them is only determined for one concrete input, but due to
caches and pipelines, the timing behavior of an instruction de-
pends on the execution history. Hence, one needs to take each
possible hardware state into account. Therefore, usually no full
test coverage can be achieved and there is no safe test end cri-
terion. Techniques based on code instrumentation modify the
code, which can significantly change the cache and pipeline be-
havior (probe effect): the times measured for the instrumented
software are not necessarily identical to the timing behavior
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of the original software. Moreover, the results of end-to-end
measurements are hard to interpret, as they are not related to
particular parts of the code but only to the whole program.

One safe method for timing analysis is static program analy-
sis by Abstract Interpretation which provides guaranteed up-
per bounds for the WCET of a task. Static WCET analyz-
ers are available for complex processors with caches and out-
of-order pipelines, and, in general, support single-core and
multi-core processors. A prerequisite is that reliable models
of the processor/System-on-Chip (SoC) architecture can be de-
termined. However, there are modern high performance SoCs
which contain unpredictable and/or undocumented components
that influence the timing behavior. Analytical results for such
processors are unrealistically pessimistic.

A hybrid WCET analysis integrates static value, loop, and
path analysis with measurements to capture the timing behav-
ior of tasks. Compared to end-to-end measurements, the ad-
vantage of hybrid approaches is that measurements of short
code snippets can be taken. Increasing the number of mea-
surements for each snippet increases the chance to catch the
possible worst-case state for each of them without the need to
trigger the worst-case initial hardware state for the whole task.
When the snippets cover the complete program under analysis,
a worst-case path can be computed. The probe effect can be
avoided by leveraging the embedded trace unit (ETU) of mod-
ern processors, which allows a fine-grained observation of a
core’s program flow. These traces are usually analyzed offline,
but new FPGA-based approaches allow to analyze them online,
enabling continuous non-intrusive runtime monitoring of em-
bedded software.

For multi-core systems, the main challenge for WCET anal-
ysis is the interference generated by other cores running in par-
allel. AMC 20-193 [9] covers means to bound and mitigate
these effects. When static WCET analysis is performed, the
maximum costs of possible interference must be included in
the result, for example with the help of a WCRA (worst-case
resource accesses) analysis that gives safe upper bounds for
shared resource accesses. In a second analysis step, the bounds
are multiplied with the maximal interference delays of these
shared resources, giving the maximal interference costs for a
particular shared resource. For hybrid WCET analysis, the pic-
ture is simpler: all observable interference is already contained
in the measurements, and no extra analysis step is needed.

In this article, we describe TimeWeaver, a hybrid WCET
analysis tool, its coupling with CEDARtools to exploit state-of-
the-art runtime monitoring, and its use in the context of AMC
20-193.
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2 EASA AMC 20-193 Objectives
EASA Amendment AMC 20-193 [9], published in 2022, dis-
cusses means and defines objectives for the demonstration of
compliance with the applicable airworthiness specifications for
airborne systems and equipment that contains multi-core pro-
cessors (MCPs). In the following we will briefly summarize its
main contents and motivate the methodology outlined in this
article with respect to AMC 20-193 verification obligations.

AMC 20-193 applies to systems with two or more activated
cores not executed in lockstep mode for which the item devel-
opment assurance level (IDAL) of at least one relevant software
application is A, B, or C. One of the basic motivations of the
amendment is to determine and mitigate inter-core interference,
since “interference between the software applications or tasks
executing on an MCP could cause safety-critical software ap-
plications to behave in a non-deterministic or unsafe manner,
or could prevent them from having sufficient time to complete
the execution of their safety-critical functionality”. Indeed, in-
terference delays can have a huge impact on the memory access
latencies. Nowotsch et al. [21] measured maximal write laten-
cies of 39 cycles when only one core of the P4080 [11] was
active, and maximal write latencies of 1007 cycles when all
eight cores were running.

The guidance formulated by AMC 20-193 is structured in six
stages, (i) planning, (ii) setting of MCP resources, (iii) interfer-
ence channels and resource usage, (iv) software verification,
(v) error detection and handling, and safety nets, and (vi) data
to complement the accomplishment summaries.

The planning stage provides guidance to enhance the sys-
tem development and verification processes in a way that will
enable the hardware and the software hosted on the MCP to
satisfy the functional, performance, and timing requirements of
the system. Amongst others, Objective MCP Planning 1 re-
quires that the applicant specifies the MCP they intend to use,
the number of the active cores, and the software architecture
hosted on the MCP. In particular, the applicant has to “iden-
tify whether or not the MCP platform will provide robust re-
source partitioning and/or robust time partitioning”. Objec-
tive MCP Planning 2 demands to describe the planned use of
the shared resources, taking into account the time interference
possibly caused by the usage, as well as the planned means
to verify the usage, e.g., the tools and techniques planned for
WCET analysis / timing verification.

Stage (ii) is concerned with the configuration of the MCP.
According to objective MCP Resource Usage 1, the applicant
has to determine and document any settings that may affect
the system’s ability hosted on the MCP to satisfy the func-
tional and non-functional requirements. In stage (iii), objective
MCP Resource Usage 3 requires identifying and mitigating
interference channels, while objective MCP Resource usage 4
demands to identify and allocate resources and to verify that
the demands for resources of the MCP and the interconnect do
not exceed the available resources.

In the software verification stage, objective MCP Software 1
aims at providing assurance that the time bounds defined for
the system are not violated. If the platform provides robust

resource partitioning and robust time partitioning, the WCET
of software applications may be determined separately. In this
context, tools for computing static WCET guarantees, e.g., aiT
WCET Analyzer [10] are applicable. If no robust resource and
time partitioning can be guaranteed, the WCET has to be de-
termined with all software components on all cores executing
in the intended final configuration. This is the topic on which
this article concentrates: we will present an efficient methodol-
ogy for hybrid WCET analysis that allows interference-aware
WCET bounds to be computed non-intrusively and that pro-
vides feedback on the trace coverage obtained.

Verification goal MCP Software 2 demands to verify that the
data and control coupling between all SW components has been
exerted, and that it is correct. Here, two aspects are needed:
the feasible data and control coupling has to be determined,
and the data and control coupling coverage achieved by the
requirements-based testing has to be determined. An approach
for sound data and control coupling analysis based on the static
analyzer Astrée has been presented in [16]; the coverage infor-
mation needed may be complemented by the trace data of the
hybrid WCET analysis presented in the following sections.

Stage (v) is concerned with error detection and mitigation.
Effects of any failure that may happen inside the MCP needs
to detected and handled according to the safety goals of the
system hosted on the MCP. “Safety nets” may provide a fail-
safe containment for these failures. Finally, stage (vi) requires
the applicant to provide a description of how the objectives of
AMC 20-193 are satisfied.

From a timing analysis point of view, the most crucial fac-
tors addressed by AMC 20-193 are the selection of the MCP;
the identification, documentation, and assessment of interfer-
ence channels; and the availability of robust resource and robust
time partitioning. All these affect the suitability of the applied
methods for timing verification. For example, a MCP provid-
ing timing predictability [5, 7, 30] and timing compositionality
[12] allows for a fully static analysis. The effects of resource
conflicts can then be bounded with a worst-case resource ac-
cesses (WCRA) analysis.

The availability of robust resource partitioning directly in-
fluences the choice of the analysis strategy, as formulated in
objective MCP Software 1. Robust partitioning can either be
achieved via dedicated hardware features, or via a suitable soft-
ware architecture. For example, the privatization of shared re-
sources can prevent resource access conflicts and hence, pro-
vide robust partitioning. Ways to implement privatization of
shared resources include TDMA-based resource scheduling
[24] and runtime resource capacity enforcement [21].

However, robust partitioning may be hard to achieve for un-
predictable or undocumented features of a MCP, as the same
features that prevent the design and implementation of precise
static timing analyses often also make the analysis and miti-
gation of interference channels difficult. Consider for example
a shared cache with pseudo-random replacement: The mitiga-
tion of such an interference channel may need some kind of
software-based cache partitioning [26] which complicates the
software architecture and may conflict with other development
goals, for example the use of specific operating systems or soft-
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ware libraries.
Micro-benchmarks that intentionally drive contention on

shared resources [28] (sometimes called “stressors” or “dae-
mons”) are useful for determining and assessing interference
channels, i.e., for platform characterization. They may uncover
undocumented interference channels and measure the impact
of resource conflicts on the timing behavior, i.e., they may help
to determine the interference cost of a resource conflict for that
specific interference channel. However, their applicability for
measurement-based timing verification is limited. In case ro-
bust partitioning is available for the system hosted on the MCP,
it will by definition prevent any adverse effects of the stressor
on the software tasks for which the timing needs to be veri-
fied. If no robust partitioning is available, it will lead to overly
pessimistic timing behavior being observed that not necessar-
ily reflect the real timing behavior of the system. Moreover,
the use of a stressor during measurement-based timing verifi-
cation contradicts objective MCP Software 1 of AMC 20-193:
the WCET has to be determined with all software components
on all cores executing in the intended final configuration.

Instead, in accordance with AMC 20-193, we propose to ap-
ply hybrid timing analysis for commercial-of-the-shelf (COTS)
multicore processors for which robust partitioning cannot be
guaranteed. The measurements should be performed in the in-
tended final configuration without any artificial generation of
contention. Quite the contrary, the software architecture should
prevent any unneeded interference, if possible.

3 Hybrid WCET Analysis
The goal of non-intrusive trace-based WCET analysis is to ob-
serve execution times of tasks and interrupt service routines
(ISRs) including the timing interference due to concurrent ex-
ecution and multi-core resource conflicts, while avoiding the
probe effect.

The solution which is implemented in the hybrid WCET
analysis tool TimeWeaver [1] combines static context-sensitive
path analysis with non-intrusive real-time instruction-level
tracing to provide worst-case execution time estimates. By its
nature, an analysis using measurements to derive timing infor-
mation is aware of timing interference due to concurrent ex-
ecution and multi-core resource conflicts, because the effects
of asynchronous events (e.g. activity of other running cores
or DRAM refreshes) are directly visible in the measurements.
The probe effect is completely avoided since no code instru-
mentation is needed. The trace information can be provided
out-of-the-box by embedded trace units of modern processors,
like Nexus IEEE-ISTO 5001™ [13], Infineon MCDS™ [14], or
ARM CoreSight™ [3], as used for example in the NXP Layer-
scape LX2xxx. These trace protocols allow the fine-grained ob-
servation of a program execution and assign timestamps to spe-
cific program points during execution. Thus, the traces contain
an execution time measurement for each trace segment stretch-
ing out between two consecutive trace points. The computed
estimates are safe upper bounds with respect to the given input
traces, i.e., TimeWeaver derives an overall upper timing bound
from the execution time observed in the given traces by em-
ploying path extrapolation [18]. Thus, the coverage of the in-

put traces on the analyzed code is an important metric that in-
fluences the quality of the computed WCET estimates. ARM,
PPC, RH850, and TriCore/AURIX are already supported; a
TimeWeaver version targeting RISC-V is currently in develop-
ment, exploiting the open trace interface developed as part of
the European Chips JU TRISTAN [27].

3.1 Structure of TimeWeaver
The main inputs for TimeWeaver are the fully linked exe-
cutable(s), timed traces, and the location of the analyzed code
in the memory (entry point, which usually is the name of a task
or function). The analysis proceeds in several stages: decod-
ing, loop/value analysis, trace analysis, and path analysis (see
Figure 1). Most steps in this tool chain are shared with aiT
WCET Analyzer which provides a fully static analysis target-
ing timing-predictable processors [10].

Figure 1: Structure of TimeWeaver. The analysis proceeds in
four key stages: decoding, loop/value analysis, trace analysis,
and path analysis.
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In the decoding phase, the instruction decoder reads and dis-
assembles the input executable(s) into its individual instruc-
tions. Architecture specific patterns decide whether an instruc-
tion is a control-flow related instruction (e.g., call, branch, re-
turn) or just an ordinary instruction. This knowledge is used to
reconstruct the basic blocks of the control-flow graph (CFG).
Then, the control flow between the basic blocks is recon-
structed. In most cases, this is done completely automatically.
However, if a target of a call or branch cannot be statically re-
solved, either the user can write some annotations to guide the
control-flow reconstruction, or TimeWeaver can be instructed
to extract the targets of unresolved branches or calls from the
input traces. To this end there is a feedback loop between the
CFG reconstruction and the trace analysis step.

In the next phase, several microarchitectural analyses are per-
formed on the reconstructed CFG starting with the combined
loop and value analysis. It determines possible values of regis-
ters and memory cells, addresses of memory accesses, as well
as loop and recursion bounds. Based on this, statically infeasi-
ble paths are computed, i.e., parts of the program that cannot be
reached by any execution under the given configuration. This
is important because each detected infeasible path increases the
trace coverage. Such paths are pruned from further analysis. If
the value analysis cannot compute a loop bound or if the com-
puted bound is not precise enough, users can specify custom
bounds by means of annotations which are used by the analy-
sis. Loop bounds can also be extracted from the traces.

After value analysis, the analyzer has annotated each instruc-
tion in the control-flow graph with context-sensitive analysis
results. This context-sensitivity is important because the preci-
sion of an analysis can be improved significantly if the execu-
tion environment is considered [25]. For example, if a routine is
called with different register values from two different program
points, the execution time in both situations might be different.
Depending on the context settings, this is taken into account
leading to higher precision in the analysis result.

In the trace analysis step the given traces are analyzed such
that each trace event is mapped to a program point in the
control-flow graph. This mapping defines the trace points and
trace segments between them and is not only necessary for the
whole analysis but also ensures that the input trace matches the
analyzed binary. In case a preemptive system has been traced,
interrupts are detected and reported. The extracted timing in-
formation, i.e., the clock cycles which have been elapsed be-
tween two consecutive trace points are annotated to the CFG in
a context-sensitive manner.

Afterwards, a CFG which combines the results of value anal-
ysis and traced execution timings (both context-sensitive) is
available. This graph is the input for the next step, the path anal-
ysis phase. Here, the trace segment times alongside the control-
flow graph are used to generate an integer linear program (ILP)
formulation to compute the worst-case execution path with re-
spect to the traced timings. At this point, the recorded times
for each pair of trace segment and analysis context get maxi-
mized. The implicit path enumeration technique (IPET) used
by TimeWeaver allows to construct WCET estimates for paths
that have not been observed themselves during measurements

but are only created during path extrapolation. Thus, not ev-
ery path needs to be explicitly observed in the traces, greatly
reducing the number of measurements that need to be taken.

TimeWeaver also computes the timing contributions of each
function and uses debug information to map this information
back to the source code. Thus, TimeWeaver allows to have
an in-depth look where time is spent and helps to uncover
hotspots. These are often unexpected. For example, the ac-
cidental use of 64-bit integer division on a 32-bit architecture
leads to the inclusion of software routines for this arithmetic
operation. Changing the underlying integer type in the source
code reduces this overhead.

3.2 Quality of Measurements
Besides the WCET estimate itself, TimeWeaver also gives
guidance concerning the quality of the measurements by com-
puting several coverage metrics. In principle, path coverage
is the best coverage criterion. Achieving 100 % path cover-
age means that every possible path through a program has been
tested. However, both computing path coverage as well as try-
ing to reach full path coverage is computationally extremely
expensive, as there are exponentially many paths for the num-
ber of branches in a program. Thus, TimeWeaver employs path
extrapolation to reduce the burden of having each path mea-
sured at least once. The traces are cut into segments, i.e., the
path between two consecutive trace points. These segments
may span several basic blocks in the CFG. The ILP formula-
tion of the path analysis allows to construct the longest path in
the CFG based on the trace segments even if this path has not
been observed directly in the traces.

TimeWeaver computes the following coverage metrics:
block/instruction coverage, edge coverage, and flow coverage.
The metrics are computed at the machine code level; a mapping
to the source code level is available. For each basic block in the
CFG, TimeWeaver reports whether it has been covered by mea-
surements and if yes, how often. This information is also used
to compute the instruction coverage. Paths for which infea-
sibility has been proven need no measurements, so associated
blocks are excluded while computing coverage. This makes it
easy to detect missing tests that are needed to trigger specific
execution scenarios.

Checking the number of measurements for each basic block
allows to assess the confidence in the measured timings. To
support this, TimeWeaver also reports for each trace seg-
ment the minimum, maximum, and average observed execution
times, plus the standard deviation. The same information is
also computed for all traces, making outliers easily detectable.
Moreover, loops for which the analyzed worst-case iteration
count has not been measured are also reported.

Some basic blocks are reachable from multiple predecessors,
so full block coverage does not ensure that each way a block
can be reached has been observed. However, this is an impor-
tant metric for timing analysis as many performance-enhancing
features of modern processors take the execution history into
account. Hence, TimeWeaver additionally computes the edge
coverage and the flow coverage for each block. Full edge cov-
erage means that each possible combination of a block and its
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predecessors has been observed. Flow coverage improves on
this metric by taking the successors into account, i.e., each pos-
sible combination of predecessor → block → successor needs
to be observed to reach full flow coverage. Flow coverage helps
to uncover hidden dependencies in the measurements.

Most implementations of the various trace protocols do not
emit a trace message for each branch but only if the branch
target has been computed, or if the branch history buffer is
full. The program flow is captured by recording single bits for
taken/not-taken branches. Thus, there might be some control-
flow joins in the CFG for which no trace point exists, prevent-
ing the path extrapolation at these program points. To aid the
path extrapolation, special code patterns can be used to force
the ETU to emit a trace message. For example, the ETU can be
configured to emit a trace message for each branch-and-link in-
struction on the PowerPC architecture. Together with the trace
point at return instructions, this feature ensures that trace seg-
ments do not cross routine boundaries. Another possibility is
the usage of lightweight hardware-supported instrumentation to
enforce trace points at specific locations.

Many performance-enhancing features like branch predic-
tion, caches, pipelining, etc. take the execution history into ac-
count. Thus, the hardware state influences the timing behavior
of a code snippet. The longer the observation period, the greater
the likelihood of capturing the WCET situations for each seg-
ment in the trace. Although it cannot be guaranteed that the
WCET situation for each trace segment occurred during trac-
ing, it is much more likely than trying to trigger the WCET
situation for the whole task or ISR. Moreover, since the path ex-
trapolation combines maximum trace segment times that might
be mutually exclusive in reality, the resulting WCET estimate
is usually larger than the maximum observed execution time of
that path, adding some kind of safety margin. However, long
observation periods result in large trace files. Hence, a bal-
anced approach is favorable. The key here is not to analyze just
any trace sequences, but those with relevant anomalies such
as particularly long execution times or specific execution pre-
fixes (see Figure 2). How exactly these sequences are identi-
fied is explained in Section 4. A virtually unlimited observa-
tion period (typically spanning a few hours to a few days)—
as provided by Accemic’s CEDARtools—can significantly en-
hance the statistical relevance and, as a result, increase confi-
dence in the results of the WCET analysis. Thus, we coupled
TimeWeaver with CEDARtools, see Section 5.

3.3 Qualification Support
AbsInt provides Qualification Support Kits (QSKs) to assist the
automatic qualification of its tools up to the highest criticality
levels. The QSKs aim at demonstrating the correct function-
ing of the tool in the operational context of the tool user with
respect to the relevant tool-influencing parameters like options,
code constructs, provided external information for the analyz-
ers, etc. The QSK consists of the following parts: specifica-
tion of the tool functional requirements, test cases and test case
procedures, requirements trace data (traceability matrix), test
suite and execution framework, and tool lifecycle data. The tool
lifecycle data demonstrate development in accordance to safety

Occurrence

Execution
Time

Occurrence

Execution
Time

Traditional approach
All trace snippets are stored and
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depends on trace buffer size. 
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are stored and processed.
No limitation in observation time.
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the more robust the statistical relevance.

possible execution times

Trace snippets
capturing

a specific edge

Figure 2: Comparison of traditional trace analysis approaches
with the new online analysis implemented by CEDARtools that
allows for a virtually unlimited observation period.

standards. The QSKs enable the qualification of TimeWeaver in
accordance to domain-relevant safety standards like DO-178C
/ DO-330, ISO-26262, IEC-61508, EN-50128 / EN-50657, and
more. More details on the tool qualification strategy of AbsInt
can be found in [17].

4 Embedded Trace
Embedded trace [22] is a method for non-intrusively monitor-
ing processors, providing valuable insights into their program
execution at the machine code level. By leveraging embedded
trace, engineers can gain a deep understanding of processor
operations without disrupting the normal execution of software
or hardware. This technology is implemented through specific
hardware structures that are tightly coupled to the CPU(s) and
are used to capture data about the execution of code. The major
advantage of using embedded trace is that the embedded trace
unit (ETU) does not influence the CPU when monitoring the
program flow, i.e., from the application’s point of view it is not
possible to tell whether the ETU is active or not.

Figure 3 provides an overview of the individual elements and
the trace data flow of a processor equipped with embedded
trace. We refer to these elements by their encircled identifiers
in the following detailed explanation.

There are several options for transferring the trace data gener-
ated by the ETU to an external tool. The trace data can be tem-
porarily stored inside the processor in special embedded trace
buffers (ETB) (A) or in the system memory (B). Trace data can
also be output via dedicated embedded trace interfaces (ETI)
(C1) or via system interfaces (C2) to avoid the limited observa-
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Figure 3: Elements of embedded trace. The target system producing trace data is shown on the left, while the off-chip processing
of trace data is shown on the right.

tion time caused by the memory limitations. The direct output
of the trace data via ETI is technically the most elegant solu-
tion, since it does not interfere with the processor. However,
implementing an interface with the required high bandwidth is
expensive, so some processor designs compromise by storing
the trace data in the main memory (B) or outputting it via a
system interface (C2). However, this is also done at the ex-
pense of the desired non-intrusiveness—the required bus oper-
ations interfere with the application (indicated by the yellow
flash symbols in Figure 3). To allow the use of trace informa-
tion outside the SoC, trace data is output either directly using
dedicated trace interfaces (parallel [20] or high-speed serial like
Aurora [31]) (D1), or via fast system interfaces (usually PCIe,
sometimes USB) (D2).

This trace data is then received by an external trace tool.
There exist simple trace buffers and advanced smart trace tools.
Trace buffers (E1) typically contain several GiB of memory
where the received trace data is temporarily stored before the
decoding and further processing in a PC (E2). The disadvan-
tage of this approach is the limited size of the trace buffer,
which limits the observation time and thus contradicts the re-
quirement of being able to observe and analyze a system for as
long as possible. This problem is addressed by a new genera-
tion of smart trace tools, which continuously process incoming
trace data (F1) and perform real-time reconstruction of the con-
trol flow, including timing information. Scalable parallelization
with FPGA-based hardware acceleration enables control-flow
reconstruction for processors with more than 2 GHz operat-
ing clock (for example the Layerscape® LX2160A). Control-
flow reconstruction is also supported for applications running
on multitasking operating systems such as Linux or VxWorks®,
and for applications using dynamically loaded libraries. Based
on the live reconstructed control flow and a set of filters,
the system can now qualify and store relevant trace snippets
in a segmented buffer with a capacity of several GiB (F2).
This smart architecture has been implemented in CEDARtools,
which are presented in Section 5.

A crucial requirement for trace-based WCET analysis is pre-
cise timing information about the observed program execution.
However, a high-frequency output of timestamps could signifi-

cantly inflate the required trace bandwidth. Furthermore, mod-
ern trace protocols like Intel PT, Arm Coresight ETM v4, and
Nexus Branch History Trace focus on bandwidth optimization
and hence, emit trace data not for each executed instruction, but
only for the execution of conditional and computed branches.
In addition, it cannot be relied upon to generate a timestamp for
every jump in every case, but rather to output a timestamp only
after a group of jumps. Some trace protocols support setting
a minimum cycle count (Arm® Cortex®-A53: 4 CPU clock
cycles [4]) at which a new timestamp is sent for a branch com-
mand. For other protocols, the sending of a new timestamp
is linked to the execution of an indirect jump [13]). Depend-
ing on the monitoring requirements (accuracy, acceptable intru-
siveness) and the capabilities of the embedded trace unit imple-
mented in the processor, a suitable trace strategy can be found
for each application. Balancing the capture of sufficient tim-
ing information while optimizing trace bandwidth is a critical
challenge when utilizing embedded trace for WCET analysis.

An enhancement of the embedded trace approach, tackling
the two issues discussed before, is currently being developed
within the TRISTAN project [27]. In a processor-side trace
subsystem for the RISC-V architecture, the application is em-
powered to communicate relevant trigger points to the trace
unit through minimally intrusive instrumentation. Ideally, ded-
icated static analysis tools can automatically identify these trig-
ger points, and the compiler can insert the appropriate instru-
mentation into the binary code as non-functional instructions.
This instrumentation performs deterministic access to special
CPU registers, leaving the registers relevant to the application
unaltered. From the application’s point of view, it is equivalent
to a sequence of nop instructions, which consumes only a few
CPU clock cycles and does not access the system bus. In most
cases, it is therefore justifiable to leave such minimally intru-
sive and deterministic instrumentation in the release code. The
identified trigger points could, for example, involve measuring
the time between instruction A and instruction B, storing the
trace sequence from 1 ms before A to 1 ms after B for every
case where the time between A and B reaches a new maximum
and discarding the previously stored trace sequence. This fore-
knowledge of the code segments relevant for WCET measure-
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ments, known at design time, can also be used for precise and
bandwidth-efficient control of the output of timing information
(CPU clock cycles, wall clock time) by the CPU. Instead of
sending timestamps indiscriminately as it was done previously,
precise timing information can now be embedded into the trace
data stream, ensuring that no redundant information is trans-
mitted while also preventing any gaps in the timing data.

More complex functional tests can be executed on the system
traces going beyond simple code coverage or timing measure-
ments. Runtime verification [19] is a formal dynamic method
that considers actual runs of a system, and checks properties on
streams of events—i.e., system traces—using so-called mon-
itors constructed from high-level specifications. Given such
a specification formulated in an appropriate specification lan-
guage, a monitor is synthesized that runs in parallel to the exe-
cution of the system. It accepts exactly the traces of the system
adhering to the specification. All other executions are identified
as failures. Some level of system resilience can be achieved by
so-called runtime reflection [19], which aims to devise mitiga-
tion actions in the case of failures to restore some of the sys-
tem’s functionality. This is particular useful for safety-critical
systems for which no safe state exists, and thus, being fail-safe
is not sufficient but being fail-operational is necessary. The
same techniques can also be used to implement complex trig-
ger conditions for trace recording.

The smart trace approach has been implemented in the form
of software tools and specialized hardware, and demonstrated
in a number of pilot applications. Theoretical and practical as-
pects of it have been described in several previous publications
[22, 15, 29, 6, 8].

5 TimeWeaver/CEDARtools Coupling
Nowadays, in many recent computing platforms for embedded
systems, trace data of the program execution is provided by the
target system via dedicated, often already existing processing
interfaces. Existing trace tools are logging such trace data in
a file for offline analysis. This allows to analyze the cause of
complex error patterns even after a system has been released.
However, this allows only post-mortem analysis and due to the
sheer data volume of traces (several GiB/s even for medium-
sized processors), the time span that can be observed is limited.

As an alternative, we present with CEDARtools [2] an ap-
proach for dynamic analysis and inspection of embedded sys-
tems that is based on the idea of on-the-fly analysis of trace
data at run-time. We argue that the approach offers several
advantages compared to existing static and dynamic analy-
sis methods. The trace analysis capability can be fully sepa-
rated from the target system; in our case, through specialized
high-performance hardware (FPGAs) that can keep up with the
speed of trace generation. This means that no instrumenta-
tion of the system under scrutiny is necessary, and its original,
unaltered behavior can be observed (non-intrusiveness). This
is especially important for precise timing analysis in real-time
applications, and for analyzing systems with non-deterministic
compute architectures and parallelism. In addition, in our so-
lution the on-the-fly processing of traces obliterates the need

for storing (most or all of) the trace data1, thus enabling long-
term or even continuous monitoring to catch also sporadic rare
events that are otherwise hard to track down. With a capacity of
several GiB, the trace memory of CEDARtools is large enough
to store relevant sequences for evidentiary purposes. Both sim-
ple and complex triggers can be defined in a high-level specifi-
cation language [15] and make it possible to precisely identify
relevant parts of the trace data stream. Hence, only those rele-
vant parts of the trace stream need to be stored in a (partitioned)
ring buffer. For example, each time a new maximum execution
time a task is observed, the corresponding trace data replaces
the old measurements, ensuring that a trace of the currently ob-
served worst-case scenario is stored for later offline analysis.
Furthermore, the efficiency of the analysis is significantly in-
creased by monitoring not only one point of interest, but up to
32 of them simultaneously.

The coupling between TimeWeaver and CEDARtools is de-
picted in Figure 4. It consists of three main components: the
target system on the left, the FPGA-based CEDARtools trace
box in the middle, and the offline hybrid timing analysis on the
right side of the figure.

The binary executable of the software under analysis is
loaded onto the target system. The test engineer decides which
parts of the software system are of particular interest for the
timing analysis, for example tasks or ISRs. As part of a test
campaign, they are executed inside a test harness that generates
the necessary input stimuli to trigger the intended behavior un-
der scrutiny (unit test / integration test). While the target system
is running, trace data is emitted via the trace port of the target
system. Attached to this port is the CEDARtools trace box.

The trace box processes the incoming trace data at runtime.
The highly compressed trace stream is decoded inside a FPGA
to reconstruct the control flow of the software system under ob-
servation. The processing speed matches the execution speed
of the target system to enable the live monitoring of the soft-
ware system. The trace box allows virtually unlimited observa-
tion periods since only those parts of the trace stream are stored
for later offline processing that match predefined criteria. The
criteria a given by the test engineer. One possibility is the col-
lection of bad-case scenarios for the points of interests (i.e., the
tasks and ISRs of the system). Here, the internal ring buffer of
the trace box is partitioned in up to 32 slices. Each slice can
store the trace of one observation of a task/ISR together with
the observed execution time of this instance. If the currently
running instance of the task/ISR exceeds the previous maxi-
mum observed execution time, the currently running instance
replaces the one previously stored in the slice of the ring buffer.
Another possibility is the collection of traces for specific trig-
ger conditions, for example only after a specific combination of
tasks has been executed. The trace data stored in the ring buffer
can be exported for further offline processing or as a witness for
specific execution scenarios.

Finally, the exported trace files are used in a hybrid timing
analysis of the software system. Here, the binary executed on

1Certification of safety-critical systems may, however, sometimes require
evidence that is documented in the form of traces. Hence, CEDARtools allow
to export selected traces.
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Figure 4: Coupling of CEDARtools and TimeWeaver for hybrid WCET estimation of multicore systems.

the target system, the trace files, and the entry points of the
tasks and ISRs that are of particular interest are the input for
TimeWeaver. The inputs are processed as explained in Sec-
tion 3. Path extrapolation during the static path analysis phase
of TimeWeaver constructs a critical path from the trace seg-
ments obtained via the CEDARtools trace box. Thus, the cou-
pling will find the worst possible path through the CFG even
if it has never been observed directly. The result of the hybrid
timing analysis is an estimate of the WCET, together with the
visualisation of the critical path and statistics for the various
trace segments used to compute the estimate. One example for
a timing analysis result is depicted in Figure 5. In case the cov-
erage report of TimeWeaver uncovers code regions that have
less than the required percentage of instruction, edge, or flow
coverage, CEDARtools can be instructed to save exactly those
trace sequences that cover the code region in question.

We argue that the targeted selection of trace snippets within
an arbitrarily long observation period has a higher statistical
relevance than the recording of trace snippets that are randomly
located within a limited observation period. The analysis of
several avionics applications, which we are not allowed to pub-
lish, has confirmed this assumption. To demonstrate how the
method works, a sample application was developed with a ran-
dom Gaussian-distributed execution time. As expected, we ob-
tained a realistic WCET estimate with the presented methodol-
ogy which is 52% higher than when using a randomly selected
full trace sequence within a limited observation period. How-
ever, these results cannot be generalized and are highly depen-
dent on the application under investigation.

6 Conclusion
For multi-core systems, the main challenge for WCET analysis
is the interference generated by other cores running in paral-
lel. If the platform provides no robust resource partitioning and
robust time partitioning, static WCET guarantees are unrealis-

Figure 5: Result visualisation of a WCET analysis using the
TimeWeaver/CEDARtools coupling for the NXP LX2160 pro-
cessor, highlighting the extrapolated critical path that leads
to the WCET estimate in red. The statistics include the ob-
served BCET (”minimum trace time”) and the observed WCET
(”maximum trace time”).

tically pessimistic. In this article we have presented a hybrid
WCET analysis that combines static value, loop, and path anal-
ysis with non-intrusive measurements to compute interference-
aware WCET bounds and provide feedback on the trace cover-
age obtained. Key to reliable hybrid WCET estimation is the
ability to observe a processor in detail over arbitrary time peri-
ods, with no or at most exceedingly minimal instrumentation.
This is achieved by embedded trace units usually already im-
plemented in all processors in combination with new powerful
live control-flow analysis tools. Our approach has been imple-
mented by a coupling and extension of the tools TimeWeaver
and CEDARtools. It is compliant to the software verification
requirements of the EASA AMC 20-193 guidance.
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