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Introduction

Most of us are familiar with multicore processors and the benefits they have brought to our daily 
lives. They have been available in personal computers since the early 2000s [1], and NVIDIA was 
promoting their benefits in mobile devices as long ago as 2010 [2]. Multicore designs address the 
problem of processors hitting the ceiling of their physical limitations in terms of their clock speeds 
and how effectively they could be cooled and still maintain accuracy. By moving to extra cores 
on a single processor chip, manufacturers avoided problems with the clock speeds by effectively 
multiplying the amount of data that could be handled by the Central Processing Unit (CPU).

With these principles established, it wasn’t long before the early two core designs were 
supplemented by options for four, six and even ten or more cores. In the early designs, all cores 
were always identical to each other – that is, they were homogenous (or symmetrical) MultiCore 
Processors (MCPs).

These processors are built for SMP (Symmetric MultiProcessing) operating systems. These 
operating systems schedule processes across the cores in order to balance the load – an 
approach used by Windows, Linux, iOS, and Android to leverage the capabilities of MCPs. 

A task may be defined as a contiguous sequence of code within a thread of execution. Computing 
systems ranging from laptop PCs and mobile devices right through to industrial control systems, 
automotive systems and aeronautical applications are designed to run one or more tasks 
concurrently. 

The key distinguishing factor here lies in the response times to stimuli that are acceptable in their 
different operational environments. 

Laptops and mobile devices deploy standard control processing, where the control process runs 
at a particular speed with no deadline. Increasing the performance of these systems is a simple 
matter of increasing the speed of the processor.

Real-time control systems are closed loop, allowing only a tight time window to gather data, 
process that data, and update the system. Hardware and software architectures have also 
evolved, potentially impacting the calculation and management of those time windows. Whatever 
the architecture, if the time window is missed then the stability of the system is degraded – and 
that can be catastrophic to critical applications.

The industrial pyramid

In practice, the criticality of this timing window is not a simple dichotomy between closed- 
and open-loop control systems. For example, the industrial pyramid in Figure 1 represents a 
hierarchical control architecture typical of manufacturing environments. 
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Figure 1: The industrial (or automation) pyramid

It classifies the different Information Technology (IT) and Operational Technology (OT) layers 
(known as “levels”) of industrial automated production plants. Every level has its own tasks 
and infrastructure. One representation of the industrial pyramid is shown in Figure 1. Level 0 
(field level) is closest to the devices and sensors, whereas Level 4 (production scheduling) is the 
furthest from the manufacturing floor. 

Characteristics of devices and systems vary accordingly. For systems at level 0, safety, security, 
and tight real-time control loops (uSecs to mSecs) are paramount. The supervisory control 
systems at level 2 require slower but still deterministic loops (multiple msecs to secs). Level 3 and 
4 systems have less demanding real-time requirements where open-loop systems are likely to be 
adequate. 

The criticality of worst-case execution times

As illustrated by this example, hard real-time systems need to satisfy stringent timing constraints 
which are derived from the systems they control. In general, upper bounds on the execution 
times are needed to show the satisfaction of these constraints. Ultimately the question is – do we 
have enough time to finish what we need to do before the system needs to do something else? 
Providing and verifying bounds allows us to verify this statistically. 

Suppose that a real-time system runs on a single-core processor and consists of several tasks, 
running concurrently. Figure 2 depicts several relevant properties of a real-time task [3]. 
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A task typically shows a certain variation of execution times depending on the input data or 
different behaviour of the environment. The set of all execution times is shown as the upper 
curve. The shortest execution time is called the Best-Case Execution Time (BCET), and the 
longest time is called the Worst-Case Execution Time (WCET). In most cases the state space is 
too large to exhaustively explore all possible executions and thereby determine the exact WCET 
and BCET, but there are approximations that allow these values to be estimated to a useful 
extent.

WCET and multicore processors

Single-core processors cannot run multiple processes in parallel, and instead use rapid 
scheduling to make it appear as though they do. As proved by Liu and Layland as long ago as 
1973 [4], there is a very sound basis for taking such an approach. For a single core processor, 
multitasking real-time systems can be guaranteed to hit their deadlines as long as sufficient 
CPU headroom (capacity) is allowed for.  

Multicore Processors (MCPs) introduce an extra level of complication in that they genuinely do 
run multiple processes in parallel. Unlike single processor applications, the task of finding a 
schedule of X tasks on Y processor cores such that all tasks meet their deadline has no efficient 
algorithm. 

The operating systems used in laptops and mobile phones do a good job, but they cannot 
guarantee to meet task deadlines. 

Exacerbating that problem, in multicore processors hardware interference can occur anywhere 
hardware is shared between processes (Figure 3). For example, often an entire hierarchical 
memory is shared so that interference is possible in many places. These interference channels 
cause the execution-time distribution to spread. Instead of a tight peak, the distribution of 
execution times becomes wide with a long tail [5]. 

Figure 3: A representation of hardware interference [5]
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Outside the realm of safety critical applications, these issues are of little consequence. But where 
functional safety is paramount, they are critical. 

Functional safety standards and WCET

The laissez-faire approach that is entirely reasonable for a laptop or a mobile phone cannot apply 
here, and the standards that ensure safety across the sectors require that the issue is dealt with 
adequately.

Civil aviation: DO-178C, CAST-32A, AMC 20-193 and AC 20-193
For many years, the use of multicore processors in civil aviation has been restricted to the use of a 
single core only due to concerns over some characteristics of multicore processors. CAST-32A [6] 
was an advisory position paper written to address that. It was supplemental to DO-178C [7], which 
is the primary document by which the certification authorities approve all commercial software-
based aerospace systems.

Strictly speaking, the RTCA “DOcument” series – DO-178, DO-330, DO-278 and so on – are 
collections of guidelines, not standards. However, they are known colloquially as standards and 
referenced as that here for expediency. 

Similarly, although not generally classified as a functional safety standard, DO-178C does address 
functional safety issues.

DO-178C established a need for the analysis of WCET, highlighting it in §6.3 (Software 
Reviews and Analyses), §6.3.4 (Reviews and Analyses of Source Code), and §11.20 (Software 
Accomplishment Summary). 

CAST-32A and its successor documents, AMC 20-193 [8] and AC 20-193, build on that to include 
detailed guidance on the criteria that are to be satisfied if multicore processors are to be 
deployed in DO-178C compliant applications. 

With reference to interference channels, they specifically highlight that “It is … important to 
identify the interference channels that could cause interference between the software applications 
hosted by their MCP platform, to mitigate the effects of each of those interference channels and to 
verify the selected means of mitigation.” 

Safety-related systems: IEC 61508
IEC 61508 [9] “Functional safety of electrical/electronic/programmable electronic safety-related 
systems” is widely accepted as a reference standard. Although it is often applied directly in the 
development of safety critical systems, its generic nature also makes it an ideal “blank canvas” 
for the derivation of industry and sector specific standards.

IEC 61508 part 3 §7.9 is concerned with software verification. §7.9.2.14 discusses the verification 
of timing performance more specifically, requiring that the “verification of timing performance: 
predictability of behaviour in the time domain shall be verified.” It goes on to note that “timing 
behaviour may include… worst case execution time”. 

Automotive applications: ISO 26262
A derivative of the generic IEC 61508 standard, ISO 26262 [10] requires that timing constraints 
should be included within the software safety requirements. Both the worst-case execution time 
at the code level and the response time at the system level are to be considered, and there is 
reference to “appropriate scheduling properties”.

Temporal constraints also are a part of the software architectural design (Part 6 §7.4.5), especially 
the worst-case execution time.

Developing compliant software systems with multicore processors
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Railway and GTS systems: The EN 5012x series
Like other derivatives of the IEC 61508 standard, the EN 5012x [11] series of standards details 
concerns with response timing and memory constraints. EN 50128 §D.45 requires that “An 
analysis is performed which will identify the distribution demands under average and worst-
case conditions”.

Medical devices: IEC 62304
IEC 62304 [12] is another IEC 61508 derivative, and it is also heavily influenced by US FDA 
regulations [13]. IEC 62304 §5.2.2 suggests the definition of functionality and capability 
requirements should include “timing requirements”.

Implications and best practices

The analysis of WCET

Even in the case of single core processors, the calculation of WCET based on first principles is 
not a trivial exercise. Several methods exist, including end-to-end measurements of execution 
times, and manual static analysis techniques such as counting and summing assembler 
instructions for each function, loop etc. 

Although static analysis tools do exist for the purpose, the calculation of a definitive value 
of WCET by mathematical analysis is not soluble in the general case. According to Reinhard 
Wilhelm et al., any such approach will therefore require approximations to be applied which 
have to be correct, but not necessarily complete [3]. The result is that such tools will necessarily 
err “on the safe side” which is better than nothing, but in an environment where precision is 
everything, it cannot be ideal – even without the additional vagaries introduced by MCPs.

However, there are long standing and proven mechanisms available to measure the properties 
of software code which are independent of their execution on any particular platform. For 
example, Halstead’s metrics [14] reflect the implementation or expression of algorithms in 
different languages to evaluate the software module size, software complexity, and the data 
flow information – and these can be calculated precisely from the static analysis of the source 
code (Figure 4). Such an approach can identify which sections of code are the most demanding 
of processing time but cannot provide absolute values for maximum time elapsed. 

Figure 4: Halstead’s Metrics as calculated using the TBvision component of the LDRA tool suite [15]

The same static analysis also yields call diagrams, presenting a means of visualizing where the 
most demanding functions revealed by this analysis are exercised in the context of the whole 
code base (Figure 5). 
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Figure 5: Call diagrams generated by the TBvision component of the LDRA tool suite 
provide a means to visualize where the most demanding functions are called

Figure 6: Using the TBrun [16] component of the LDRA tool suite with the TBwcet [17] 
module to measure execution times

There is no better way to ascertain how that information translates into time elapsed for a 
particular function or call tree than by measuring it in the environment in which it is intended 
to run. That can be measured dynamically by deploying the TBrun component of the LDRA tool 
suite, complete with the supplementary TBwcet module (Figure 6).
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Such a tool automates the measurements, running the specified tests repeatedly and providing a 
graphical representation of the variation in execution times (Figure 7). It allows the user to select 
their preferred hardware stress utility (stress-ng [18], for example) to load the different shared 
resources on the target processor to varying degrees.

In the example, interference can be seen to have a detrimental effect on execution time. The 
observed WCET is just over 450 million CPU ticks (up from 308), and the mean execution time is 
just under 229 million CPU ticks (up from 116). If the coverage objectives have been met and the 
observed WCET falls within bounds, then the interference mitigation is adequate. If not, then the 
resulting data provides the information required to further optimize the system.

This facility lends itself to performing interference research, and ultimately to demonstrating 
that the resulting interference mitigation ensures that WCET verification requirements are met.

Developing compliant software systems with multicore processors

Figure 7: Histograms showing the spread of execution times as displayed by the LDRA tool suite.

Interference research and iterative development 

Despite this sound foundation, the empirical nature of verification and validation in the MCP 
environment as compared to single core makes it imperative that the project managers are 
equipped to adapt readily to changing requirements and configurations.

Dan Iorga et al. [19] recommend a slow and steady approach to measuring and tuning 
interference. It is highly likely that such interference research will lead to changes in system 
or software requirements, and conversely that changes in system functional requirements will 
drive new interference channels or affect existing ones. (Figure 8).
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Under these circumstances, an automated mechanism is vital to keep track of what needs revisiting 
for renewed verification and validation, and hence to keep the project on schedule, and within 
budget (Figure 9).

Figure 8: Recommended multicore certification approach [19]

Developing compliant software systems with multicore processors

Figure 9: Automating the tracing of requirements and regulatory objectives using the TBmanager [20] component 
of the LDRA tool suite.



Robust partitioning 
Although this iterative approach provides a mechanism to deal with interference from first 
principles, the use of an RTOS or Hypervisor that offers robust resource and time partitioning is 
likely to be helpful. In the civil aviation sector, CAST-32A/A(M)C 20-193 makes specific allowance 
for that:

“Applicants who have verified that their MCP Platform provides both Robust Resource and 
Time Partitioning … may verify applications separately on the MCP and determine their WCETs 
separately.”

That said, the robust partitioning offered by an RTOS, Separation Kernel, or Hypervisor is only 
as effective as its configuration. Robust partitioning can eliminate many potential interference 
channels, but the onus remains on the developer to demonstrate that interference mitigation is 
effective. 

Critical real-time multicore applications: other considerations

Aside from WCET, the use of multicore processors impacts several other practices promoted by 
functional safety standards. 

Evidence of compliance 
It is important to remember that in the development of a safety-critical system, the considerations 
given to multicore are merely supplemental to that of a functional safety related process. For 
example, systems achieving CAST-32A or A(M)C 20-193 compliance are also likely to meet the 
requirements of DO-178C.

Automating bidirectional traceability to both project requirements (Figure 9) and to the objectives 
of one or more process standards and guidance documents can help to address a major project 
management pain point.

Coding standard compliance
Most functional safety standards promote the use of coding standards (or language subsets) 
such as those promoted by the MISRA Consortium [21]. These are significant in the context 
of multicore processor-based systems because the rules promoted by these standards guard 
against the insertions of runtime defects that have the potential to compromise shared resources. 

Figure 10: Automating traceability to CAST-32A and A(M)C 20-193 objectives with the TBmanager component of 
the LDRA tool suite.
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Data coupling analysis and control coupling analysis
Software issues such as flawed coupling can introduce delays and variation in execution times, 
adding to the variation of execution times. 

CAST-32A and A(M)C-193 § MCP_Software_2 provides aviation-specific advice that is equally valid 
in other safety critical sectors in this regard. It states that:

“The applicant has verified that the data and control coupling between all the individual software 
components hosted on the same core or on different cores of the MCP has been exercised during 
software requirement-based testing, including exercising any interfaces between the applications 
via shared memory and any mechanisms to control the access to shared memory, and that the data 
and control coupling is correct.”  

Static analysis tools support control coupling and data coupling analysis relating to explicit data 
and control flow between software components and applications. 

The guidance in the documents also references the possibility of coupling on a platform level, and 
the WCET analysis techniques discussed earlier relate to that. In most cases control coupling is not 
a significant factor in multi-core environments. Data coupling, however, is – as the cores need to 
communicate. Therefore, the emphasis should be on establish and reviewing requirements based 
tests to exercise any functionality in which data is shared across processors.

Developing compliant software systems with multicore processors

Figure 11: Checking coding standards compliance with the TBvision component of the LDRA tool suite. 

Figure 12: Data coupling analysis and control coupling analysis [22] with the LDRA tool suite
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Figure 13: LDRA’s instrumentation uses probes that are inserted only into Basic Blocks

((int)(bitmapstruct.element0 |= (1 << 9)))

Efficient instrumentation for structural coverage analysis on multicore processors
DO-178, IEC 61508, ISO 26262 and other standards concerned with functional safety require 
structural coverage analysis [23]. Structural coverage data is collated during requirements-based 
test procedures. The execution of an “instrumented” copy of the source code records the paths 
taken during execution, and the resulting output submitted for analysis.

Coverage analysis at the software level requires instrumentation probes within the code to track 
execution. That inevitably has an impact on both performance and resources.

It is necessary to minimize that impact for instrumentation to be effective in a multicore system. 
One approach to achieving that is to adopt instrumentation techniques that rely on probes 
inserted into each basic block, meaning that there are as few of them as possible (Figure 13).

With the number of probes minimized, it is also important to the memory required to store the 
coverage data. Bit-packed storage uses individual bits in a word that correspond to the probe 
location. That location is pre-calculated, saving execution time (Figure 14).

In a multicore system, collisions are possible. If more than one core writes to the same location, 
all but the first attempt will fail. However, embedded systems generally run in a loop. It is 
therefore highly likely that probes will execute repeatedly, and coverage that is unrecorded due 
to a collision will be recorded on a subsequent pass. Even failing that, the coverage reported is 
failsafe, because it can never overstate the amount of code exercised.

The alternative approach, involving semaphores or mutexes, would have a significant 
performance overhead. These remain necessary for MC/DC analysis, where atomic locking 
ensures the accuracy and completeness of results.

Figure 14: Bit-packed coverage data storage



Conclusions

Concerns over the suitability of Multicore Processors (MCPs) for safety critical applications are 
nothing new. But the relatively low volume of the safety critical sectors has seen a situation 
evolve where MCPs based critical applications have deployed a single core only. In a world where 
other applications are seeing huge benefits from the SWaP advantages of fully utilized MCPs, that 
cannot be an ideal situation.

However, there are challenges with MCPs in these environments. The use of a symmetric 
multiprocessing operating system is not a viable option, and robust partitioning between 
domains is critical. However that is achieved – via an RTOS, separation kernel, or hypervisor – 
hardware interference represents another challenge.

Even for a single core, the calculation of Worst-Case Execution Times (WCET) through static 
analysis alone can only ever be an approximation. Combining that approximate approach with the 
additional demands of MCPs where these approximations are apparent across all cores is clearly a 
suboptimal approach. It is far better to determine where the most demanding execution paths lie, 
and then measure their duration dynamically. 

One recommendation is the use of an iterative development model to overcome this challenge, 
repeatedly testing and adapting the system as it is developed to ensure that the potential for such 
interference is minimized. In sophisticated projects, keeping track of the fulfilment of standard 
objectives and project requirements can be difficult enough even without the introduction of such 
a process. An integrated, automated requirements traceability system is invaluable.

In summary, there are real challenges in the application of MCPs in the safety critical sector, but 
none that are insurmountable given the right tools, used diligently. 
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