
A Practical Guide for
CIP Security Device Developers

Presented at the ODVA Industry Conference & Annual Meeting

A Practical Guide for CIP Security Device Developers 2

Abstract
CIP Security (Profile 1) adds transport layer security to the CIP protocol, and has a large, system-wide impact

on CIP based products. As such, there are many considerations that product developers must take into

account when designing CIP Security enabled products. Many of these issues can have potential security

implications and as a result require careful thought. Although the ODVA CIP Security specification provides

sufficient information for the implementation of this protocol, it is still beneficial to product developers to

have some additional guidance at their disposal. The aim of this paper is to provide non-normative guidance

around many of the important considerations that have an impact on CIP Security implementations. This

paper does not seek to replace or replicate the information within the CIP Security specification, but rather

provide additional guidance and information. Furthermore, as this paper is non-normative, the information

described within is not necessary for compliance (unless it is also stated within the official CIP Security

specification).

Keywords
CIP Security, Cyber Security, Certificates, Authentication, Integrity, TLS

A Practical Guide for CIP Security Device Developers 3

Definition of Terms

AES:
Advanced Encryption Standard

Symmetric Encryption Algorithm designed to
be efficient with both hardware and software.
Supports 128 bit data blocks and key sizes of
128/192/256 bits.

BSD:
Berkely Source Distribution

Derivative works from original source are not
required to be distributed under the original terms,
nor is the owner required to make source code
freely available.

Certificate Authority

A trusted entity that issues electronic documents
that verifies a digital entity’s identity on the
internet.

Cipher Suite

Examples supported in CIP Security Specification:
RSA, ECC, PSK, NULL.

CoCo:
Connection Configuration Object

CIP defined object that may be used to configure
a device to receive both secure and non-secure
communication.

CVE:
Common Vulnerability and Exposure

Publically available list of security threats with
unique identifiers (CVE names, numbers and
ID’s). Database maintained by Mitre corporation
and the National Cybersecurity FFRDC.

(D)TLS:
Datagram Transport Layer Security

Based on the TLS protocol, (D)TLS provides
communication security over UDP. Reference IETF
RFC 6347.

Digital Certificate

A digital certificate is an electronic “passport” that
allows a person, computer, or organization to
exchange information securely over the Internet
using the public key infrastructure (PKI).

Digital Certificate, Self-Signed

Certificate signed by the same entity whose
identity it certifies. (i.e. signed with its own private
key.) Used when parties know each other and
trust to protect key. Hardware based key storage
not required.

Digital Certificate, Vendor

A self-signed certificate that adds product level
public keys and secure key storage.

Digital Signature

The digital equivalent of handwritten
signature or stamped seal to validate identity.
It is a mathematical technique to validate the
authenticity and integrity of a message or digital
content. It also ensures the authenticity of the
source such that service cannot be denied (see
non-repudiation.) Digital signatures are based
on public key infrastructure (see PKI.)

A Practical Guide for CIP Security Device Developers 4

ECC:
Elliptic Curve Cryptography

Public key cryptography based on algebraic
structure of elliptic curves.

Encryption, Symmetric

Form of encryption using paired keys. One key is
known to everyone, the public key and the other
is kept secret, known as the private key. One
key encrypts a message and the opposite key
decrypts the message. RSA, ECC, Diffie Hellman

Encryption, Symmetric

Form of encryption using single key to both
encrypt and decrypt data. Examples: AES, SHA

Entropy Source

True random number generator, often hardware
generated for cryptography purposes. NIST SP
800-90

GCC:
GNU Compiler Collection

GPL:
General Public License

Software whose source code is available at no
cost for anyone to use for any purpose.

Hash Function

Any function that maps data of arbitrary size to
fixed length data. A cryptographic hash function is
designed to be one way such that it is infeasible
to derive the original number. Keys in public key
encryption are based on hash number.

HMAC:
Hash-Function Message Authentication Code

Authentication code based on two inputs: the
message and the key. The output is a code
that cannot be used by attackers to derive the
source. HMAC is an integral piece of TLS security
architecture.

Message Authentication

Confirmation that the message came from the
stated sender (its authenticity) and has not been
changed in transit (its integrity). In CIP Security
message authentication is achieved via TLS and
the HMAC function.

MAC:
Message Authentication Code

A message authentication code (MAC) is a short
piece of information (e.g. code corresponding
to a specific product serial number) used to
authenticate a message.

Message Confidentiality

Assurance that the messages between two
entities cannot be monitored by untrusted entities.
Message confidentiality is achieved in CIP
Security via the TLS Algorithm.

Message Integrity

Assurance that the message passed between two
trusted entities has not been corrupted or altered.
Message integrity is achieved in CIP Security via
the TLS Algorithm.

Definition of Terms

A Practical Guide for CIP Security Device Developers 5

Non-Repudiation

Repudiation is the rejection of an agreement.
Nonrepudiation in cyber security refers to the
ability to ensure that the party to a communication
cannot deny the authenticity of a digital signature.

NULL

NULL Encryption cipher suite. No encryption
used, cipher used for authentication
communication only, often during debug/testing
process.

PKI:
Public Key Infrastructure

A public key infrastructure (PKI) is a set of
roles, policies, and procedures needed to create,
manage, distribute, use, store, and revoke digital
certificates and manage public-key encryption.
In cryptography, a PKI is an arrangement that
binds public keys with respective user identities
by means of a certificate authority (CA).

PSK:
Pre Shared Key Encryption

A shared secret key that was previously shared
between two parties used for encryption and
decryption of data.

RSA

Public key asymmetric encryption algorithm. RSA
acronym based on names of authors Rivest, Shamir,
and Adleman.

SHA:
Secure Hash Algorithm

Hash function maps arbitrary data to data of a
fixed size. The SHA family of algorithms designed
by the NSA are used in creating digital signatures.

Spoofing

In network security, an attacker masquerades as
a legitimate entity on the network in order to gain
access to the entity’s system or information.

SSL:
Secure Socket Layer

Standard for establishing a secure link between
two entities on a network. Transport Layer Security
(TLS) standards have superseded SSL. However,
the term “SSL” is often used to refer to either the
earlier SSL protocol as well as the newer TLS
protocol and libraries.

TCP:
Transport Control Protocol

Provides connection management and guaranteed
end to end delivery of data between two network
devices. Transport Layer Security (TLS) uses TCP
services. Reference IETF RFC 5246.

TLS:
Transport Layer Security

Transport Layer Security (TLS) is the successor
cryptographic protocol to Secure Socket Layer
(SSL), that provides secure connections over a
computer network. Both are often referred to as
SSL. Reference IETF RFC 5246.

UDP:
User Datagram Protocol

Connectionless data transmission protocol.
D(TLS) uses UDP services

X.509

Standard for a Digital security certificate using
the PKI to verify that the public key belongs to the
entity contained within the certificate. (Standards
Organization: United Nations ITU-T)

Definition of Terms

A Practical Guide for CIP Security Device Developers 6

Introduction
Adding CIP Security to a new or existing project is a serious undertaking that involves several

important decisions and considerations. It is important to understand the key points in these

decisions, and ramifications that a particular path may have with regard to both CIP Security

and the overall product.

Within this paper, several considerations are raised and discussed, along with potential options

being offered where appropriate. Although it is not possible to exhaustively list all possible

decisions and impacts that CIP Security would have to a product, this paper aims to provide

a reasonable overview to help product developers in adding CIP Security support to a new or

existing product.

Library Considerations
The (D)TLS library is one of the core components in CIP Security as it provides a secure

transport mechanism using the standard Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS) protocols. TLS and DTLS make use of the IETF-standard, RFC

5246 and RFC 6347 respectively, protocols in order to provide a secure transport for EtherNet/IP

traffic. The (D)TLS library sits between the TCP/IP stack and the application protocol (EtherNet/

IP over TLS and DTLS).

The (D)TLS library is a large and complex piece of software and it is crucial that all parts implemented

in this library are designed with security in mind. Even the smallest and simplest design flaws or bugs

in the (D)TLS library might compromise the security of the device and in the end the whole system.

For those reasons it is not recommended to roll your own (D)TLS library. Instead it is recommended to

obtain an existing and well known (D)TLS library.

Figure 1:
EtherNet/IP over TLS and

 DTLS Layering

A Practical Guide for CIP Security Device Developers 7

There are many things, ranging from cost and license

for the library to size and performance, to consider

when evaluating and choosing a (D)TLS library. This

section will touch on some of the things that should be

considered when choosing a (D)TLS library. Since there

are many factors to consider and many of them are

business related, it is not possible to give any specific

recommendation. There are many (D)TLS libraries

available from different vendors and sources all with

their own respective pros and cons. Therefore, each

vendor should select a (D)TLS library based on their

needs.

In this paper four different (D)TLS libraries have

been investigated. They have not been compared

head to head but rather used as references, giving

directions and pointers regarding the different things

looked at in the library considerations section. The

libraries that have been of most focus are the ones

targeting embedded systems running on a smaller

microcontroller. The four libraries that have been looked

at are:

▪ Op enSSL

▪ wolfSSL

▪ mbed TLS (formerly known as PolarSSL)

▪ MatrixSSL

Cost and License

There are both free and commercial (D)

TLS libraries, some of the libraries are available under

a dual-license model meaning there is a free and open

source version as well as a commercial license version

that can be purchased.

One of the most well-known and used libraries,

OpenSSL, is a free and open source library. Since

OpenSSL is open source, anyone can view the code,

and, for this reason, security related issues with the

library can possibly be discovered earlier. The dual-

license libraries use the same idea, making the source

code publicly available so anyone can view it and thus

possibly having security related issues found sooner.

The dual-license libraries are usually published under

GPL, thus making the libraries free to use as long as

the source code they’re integrated in is also published

publicly. In most cases this is not an acceptable

license for most companies building products using

CIP Security. Instead the company behind the dual-

license library provides a paid version of the library

and, in this case, it comes under a different type of

license model. The companies offer different types

of the paid licenses, ranging from a per-unit cost

to full buy-outs. The dual-license is attractive since

it’s possible to start out using the free version for

testing, initial development, and prototyping and

when getting closer to finalizing the product a paid

license can be obtained, making it possible to sell the

product without having to disclose the full source

code of the product.

Some of the free and open source libraries are

available under different licenses that allow them to

be used for free and without any more restrictions

than maintaining a copyright notice in the written

documentation. OpenSSL for example is distributed

under a BSD like license.

Support

Choosing a commercial (D)TLS library generally

provides some sort of professional support from the

library vendor. And, as with all cases when purchasing

software, the support of it might come directly from

the vendor of the library or from the distributor. That

of course can be a big difference, especially in the

A Practical Guide for CIP Security Device Developers 8

case of (D)TLS libraries which are rather large

and complicated pieces of software.

The non-commercial (D)TLS libraries generally

have a large and active community behind them. And

the support in those cases comes from the library

developers and other users of the library. This doesn’t

necessarily mean that it’s of less help than the support

expected from a paid and commercial library. However,

the amount of support and the time it would take

to get help from the community behind the non-

commercial libraries may vary between the libraries

and also when the help is needed.

Since the (D)TLS libraries can be configured in many

different ways and also provide a lot of function

calls, it’s important that they come with good

documentation. The level of documentation differs a

lot between libraries.

OpenSSL has a lot of well written documentation which

is easy to access and use when already up and running.

However, it does not provide a good introduction to

get started and set up things, but this information can

be found other places.

MatrixSSL, mbed TLS, and wolfSSL all have good and

useful documentation on how to port, setup, and get

started with the libraries. They also come with easy

example applications for both clients and servers. The

API documentation varies a lot between the libraries

but are overall easy enough to understand.

Reputation

That the (D)TLS library is well-known and widely used

is important to provide assurance that it’s possible to

use the library as a building block in creating a secure

product. OpenSSL is probably the most well-known

library around and it’s being used in Linux and Unix

distributions, amongst others. It also has a good

reputation of being stable and well tested.

MatrixSSL, mbed TLS, and wolfSSL have been around

for many years and the companies behind the libraries

have been successful selling the libraries. They all have

references to well-known companies and projects

using their libraries.

A Practical Guide for CIP Security Device Developers 9

Vulnerability Management

Having a well-defined and working

procedure for dealing with vulnerabilities is important

for the makers of a (D)TLS library. When a vulnerability

is discovered and reported the makers of the library

must act in a timely manner to fix the vulnerability in

the library.

The vulnerability management process should include

procedures for how to deal with reported common

known vulnerabilities, Common Vulnerability and

Exposures or CVE for short. A CVE Identifier is a unique

number that can be used over different security

advisories by different vendors to refer to the same

issue.

OpenSSL, mbed TLS, and wolfSSL all list

the CVEs that affect certain versions of the

library and in what versions they have been

addressed. By doing this users of the library can see

that the library makers actively update and correct

issues and vulnerabilities in the library.

Another thing that’s important to consider when it

comes to a library’s vulnerability management process

is the ability to report possible issues. It is important

that vulnerabilities are discovered and that the makers

of the library work with the reporter to find out and

determine if the issue is real and a valid vulnerability

for the library.

There should also be a way to subscribe to updates

and changes in the library so potential vulnerability

fixes are received quickly, instead of actively having to

go out and check for updates at the library’s website.

Footprint

Depending on the type of device that is implementing

the library the memory footprint might be very

important. In the smaller embedded devices that

run EtherNet/IP there might not be enough memory,

both non-volatile and RAM, to implement a (D)TLS

library. Larger devices like connection originators,

i.e. PLCs, generally have more memory and thus the

memory footprint of the library is of less importance.

Also, since the (D)TLS library is a large piece of

software, adding that to an existing product that

doesn’t support CIP Security over EtherNet/IP might

be an issue. For that reason the footprint of the (D)

TLS library is of high importance.

There are some (D)TLS libraries that are specifically

designed for embedded devices. Those libraries

generally consume less memory, both non-volatile

memory and RAM, than libraries designed

to run on a desktop computer. Also the

libraries designed for embedded systems

often can be configured to use its own heap.

This can, in some cases, make the design easier if

the existing design doesn’t already have dynamic

memory management. The libraries designed

for desktop computers rely on existing dynamic

memory systems and system calls. However, the

embedded libraries don’t make use of this operating

system infrastructure, and often can be configured

to run in an environment with no operating system

whatsoever.

Since embedded devices usually don’t have a lot of

memory it’s important that the library is scalable so

it can be configured to only include functionality

required for CIP Security over EtherNet/IP. The (D)TLS

libraries that are designed with the intention of being

used in embedded systems generally provide an easy

way to enable and disable functionality and thus

allow them to be tailored and configured in the most

effective way.

Libraries like OpenSSL that were designed to be

A Practical Guide for CIP Security Device Developers 10

used as a (D)TLS library for computers generally don’t provide the developer with as many

configuration options to fine-tune them to the lowest level. However, since those libraries

generally are used in more capable and higher performant devices that might run Linux or

similar, the memory footprint isn’t likely an issue in those cases.

Capabilities
CIP Security over EtherNet/IP puts some requirements on the (D)TLS library. The key items that

the (D)TLS library has to support in order to be able to use it for implementing CIP Security over

EtherNet/IP are:

 ▪ TLS has to be at least version 1.2

 ▪ DTLS has to be at least version 1.2

 ▪ Cipher suite requirements as mandated by the specification

 ▪ Allow the use of pre-shared keys or X.509 certificates for endpoint authentication

 ▪ Allow use of either RSA or ECC public/private key pairs

 ▪ Provide data encryption (in addition to data integrity), or data integrity

only (null encryption)

Performance
In order to implement the TLS protocol the (D)TLS library needs to perform a number of

supporting cryptography operations and message digest operations, such as the SHA-256

hash algorithm. Those operations are all computation and processing heavy. And in order to

implement CIP Security over EtherNet/IP on an embedded device performance is extremely

important.

The TLS protocol requires a lot of processing power. However, processing power might not be

the first thing considered when choosing a microcontroller for an embedded system, so time

might have to be spent on optimizing performance.

It’s been shown that it’s possible to run CIP Security over EtherNet/IP on low end

microcontrollers like Cortex-M3. But this generally requires that work is done to profile the

system and analyze where the time is spent when performing the cryptography

operations and message digest operations.

The code where the most time is spent could potentially be optimized or placed

in faster memory. Also, some microcontrollers have hardware accelerators for performing

cryptography and message digest functions (see the section on hardware architecture

for more information on this). The (D)TLS library can then be ported to use the hardware

accelerators instead of code that executes on the micro controller. This can in many cases

A Practical Guide for CIP Security Device Developers 11

dramatically improve performance and at the same

time decrease the memory footprint. Some (D)

TLS libraries have porting functions to make the

integration job easier.

(D)TLS libraries also make heavy use of a

heap and a lot of the cryptography and message

digest functions are performed against data on

that heap. Thus it’s important that the heap is

placed in a memory with high bandwidth and

latency against the microcontroller or CPU.

Placing the heap in a specific memory location

is naturally easier to do if the library makes use

of a dedicated heap.

Non-scientific tests have been performed to

compare the performance of mbed TLS on a

microcontroller system, using Cortex-M3, and a

system running an application processor, dual

Cortex-A8. No efforts were made to optimize the

code, i.e. the library was compiled out of the box

using the standard configuration options.

In both cases GCC was used to compile the code

and the same optimization level was used. The

application process system was running Linux and

the embedded system ran a home grown RTOS. The

tests showed that the raw processing power of the

application processor did make a big difference in

performance.

On the application processor system, the initial TLS

handshake took tenths of milliseconds compared

to seconds on the microcontroller system. That

said, it’s possible to optimize performance on the

microcontroller to achieve an initial TLS handshake

in the range of 100 milliseconds.

Technology
The libraries reviewed in this section were all written

in C and for that reason likely easy to integrate in

the environment most EtherNet/IP products are

developed in. Beyond the four (D)TLS libraries

mentioned here there are many other libraries, some

of them written in other languages. Based on the

environment used to implement a certain product,

research needs to be done to find a (D)TLS library

suited for that specific environment.

Besides this, the smaller (D)TLS libraries that are

designed to be used in embedded systems, like

MatrixSSL, mbed TLS, and wolfSSL are all written in

a way where it’s possible to run them bare-metal, i.e.

without an operating system underneath.

Depending on the runtime environment where the

libraries are intended to be used, this is

something that needs to be considered.

If using an operating system that provides all of

the APIs and libraries that OpenSSL expects, it

would likely make it easy to integrate. If the product

doesn’t have an operating system or just a simple

RTOS without standardized system calls and

libraries, then it would likely make it easier to use the

smaller libraries intended for embedded systems.

Summary of Library Considerations

The table below gives a brief summary of the

sections covered above related to the library

considerations. The library consideration section and

table will help to assist choosing a library. However,

since there are many parameters besides what is

discussed in this paper that affect the choice of

library, each vendor should consider their needs and

do a thorough investigation.

A Practical Guide for CIP Security Device Developers 12

Summary of Library Considerations Table

Open SSL wolfSSL mbed TLS MatrixSSL

Cost and License Free Dual-License Free Dual-License

Support Good Good Good Good

Reputation Good Okay Okay Okay

Vulnerability
Management

Good Good Good Unknown

Footprint HIgh Low Low Low

Capabilites Good Good Good Low

Performance Unknown Unknown Unknown Unknown

Technology Good Good Good Good

A Practical Guide for CIP Security Device Developers 13

Figure 2: Commissioning Credentials

Key Management and Secure Identity
(D)TLS connections always start with at least one side having security credentials (which

are either a PSK or certificate). The general model of CIP Security is for the user to provision

a product with credentials that can be used to make and/or receive (D)TLS connections.

However, this begs the question: how can security be applied to the connection that is used

to provision the product with these credentials? A set of default credentials are necessary to

bootstrap this secure connection. Using the default credentials, a secure connection is made

to provision the device with its initial credentials (either a PSK or a certificate), as well as any

other appropriate CIP Security configuration. Once this initial CIP Security configuration is

completed, the default credentials are no longer used to create secure connections (unless

the product is returned to a default out-of-box state).

Client Device

Client Device

Client Device

Default credentials (certificate) is
used to create a TLS connection

Initial credentials and other CIP
Security configurations are sent over

the established TLS connection

The TLS connection is torn down,
and any new connections are
established using the Initial

Credentials

Default
Credentials

Default
Credentials

Initial
Credentials

Initial
Credentials

x

A Practical Guide for CIP Security Device Developers 14

There currently exist two options for the default identity. One is a Self-Signed

Certificate, and the other is a Vendor Certificate. Each of these options has

advantages and disadvantages which will be discussed in more detail. However, it is

necessary first to understand the threats against initial commissioning.

There are two types of credentials that can be commissioned: a PSK or a certificate.

The commissioning for each of these types of credentials has unique risks and threats.

A certificate is public information, and a PSK is private. Therefore, when a PSK is commissioned there

is a risk to the confidentiality of the communication, as an attacker who can discover the PSK value

can both communicate on the system, as well as perform spoofing, data tampering, and information

disclosure attacks on devices using the PSK.

For certificate based credentials, there is no need for confidentiality during commissioning,

as all of the information within a certificate is public (note that there may still be a marginal

benefit to this confidential communications to prevent the attacker from knowing what type

of configuration the system is using altogether). However, an attacker that can launch a data

tampering or spoofing attack on the connection used to commission the initial credentials can

certainly compromise the device being commissioned. The attacker would have the ability to

tie the certificate to a key under his/her control, or to tamper with the device’s credentials.

Table 2: Credentials vs. Threats

Threat

Credential Type Data Tampering
Information
Disclosure

Spoofing

PSK Applies Applies Applies

Certificate Applies Doesn’t Apply Applies

A Practical Guide for CIP Security Device Developers 15

With the threats enumerated, it is possible to

briefly discuss the risk each poses. For data

tampering, in the case of either a PSK or a

certificate, this would result in the endpoint’s

credentials being misconfigured. This might

prevent the endpoint from communicating

properly on the system, or might cause the

endpoint to communicate with other end-points

that were not intended.

Information disclosure represents no risk to

the certificate, as all the information is public.

However, in the case of configuring a PSK,

learning the value of the PSK has the potential

to compromise the confidentiality and integrity

of all future communications. This applies not

just for the endpoint in question, but for any

other endpoints that are using the same PSK

as credentials. Spoofing of the target allows

an attacker to provision an endpoint under

their control with the credentials intended for

the original target endpoint.

The two possible categories for default

credentials are a Self-Signed Certificate and

a Vendor Certificate. Each of these options

provide different guarantees for the level of risk.

To truly analyze the risk mitigation provided

by each of these options, one would need to

understand actual implementation. However,

a few general conclusions can be made. The

mitigations each of these options provide, as

well as other considerations, are detailed in the

following sections.

Self-Signed Certificate

A Self-Signed Certificate is certainly the

simpler of the two options, and in this simplicity lies

the greatest benefit of the Self-Signed Certificate.

No product PKI is necessary to be created and

maintained, and no hardware-based secure key

storage is necessary for the product. These are

things that generally cannot be feasibly done in a

field update.

A Practical Guide for CIP Security Device Developers 16

However, a product can relatively easily

generate a Self-Signed Certificate via a field

update. Furthermore, beyond the cost of

storing data (on the order of a few kilobytes of

memory), there is very little additional cost to

implementing this beyond the general (D)TLS

library.

Although the Self-Signed Certificate brings

many benefits in the form of simplicity and

low cost, it does have some drawbacks. The

Self-Signed Certificate does little to protect

against the spoofing case. A Self-Signed

Certificate can be easily spoofed (as one

can be generated by any attacker). Without

out of band checking there is no guarantee

of certificate authenticity, and therefore no

guarantee that the connection is established

with the intended device.

However, if the connection is indeed established

using the intended device’s Self-Signed

Certificate then that connection does provide

some security benefits. Assuming a cipher suite

is chosen which includes confidentiality, then

this would be an effective mitigation against

information disclosure (as well as data

tampering). Note that this is predicated on the

successful establishment of a TLS connection

using the intended Self-Signed Certificate. Put

another way, the large weakness here is with

the initial connection establishment, as an

attacker could replace the intended Self-Signed

Certificate with one under his/her control,

in which case all security benefits on that

connection are lost.

Vendor Certificates

In contrast to a Self-Signed

Certificate, the Vendor Certificate

adds some level of complexity to the product

implementing it. The two main areas of

complexity introduced by Vendor Certificates

are a product level PKI and secure key storage.

Strictly speaking, neither of these is absolutely

necessary for the implementation of Vendor

Certificates. However, these aspects help

significantly to realize the benefits of Vendor

Certificates. A product level PKI is necessary

for providing the signing services that sign

the Vendor Certificates. There are many

Figure 3: Certificate Interception

Client DeviceAttacker’s
Certificate

Self-Signed
Certificate

Attacker

The Attacker intercepts the Device’s
Self-Signed Certificate and inserts the

Attacker’s (also Self-Signed) Certificate.
This action is not detectable by the Client

without some out of band checking.

A Practical Guide for CIP Security Device Developers 17

considerations for this, such as scale, availability, security, etc. Different products/organizations

will have different needs in this area, therefore it is not possible to describe a product level PKI that

would be appropriate for all use cases. However, in general setting up a PKI in a moderate to large

organization is not trivial, in terms of cost, effort, and complexity. One important area of consideration

is around the protection of the signing keys; if the signing key is compromised then the PKI essentially

loses its value. Therefore, threat modeling and risk assessment activities should be undertaken to

guide the level of protection necessary.

The other aspect of Vendor Certificates that merits discussion is the secure key storage. Whereas the

product level PKI was around the keys and services for signing Vendor Certificates, the secure key

storage is around the protection of each product’s private key (which corresponds to the public key

present in the Vendor Certificate). Protection of this key is important because the ability to use it allows

an attacker to impersonate the product. Again, there are a wide range of solutions that can be applied

here, from simple data obfuscation to robust hardware mechanisms. What solution is implemented

depends on many factors that are outside the scope of this document (but also should undergo threat

modeling and risk assessment activities to drive the decision). In summary, implementing Vendor

Certificates will certainly add cost and complexity to a product.

In many ways Vendor Certificates are susceptible to the same risks and threats as a Self-Signed

Certificate. However, Vendor Certificates do offer a clear advantage in this area: their authenticity can

be verified by anyone with the proper verification key. That is, the spoofing attack described with the

Self-Signed Certificates changes. If the client verifies the authenticity of the device’s Vendor Certificate,

then it is no longer possible for this spoofing attack to occur. However, this benefit comes with some

caveats:

1. The client must know a priori the public key used to verify Vendor Certificates. This means

the client may need to maintain a list of several keys from several different vendors. These keys

are all public information, so it is more a matter of building this knowledge into the client

Cipher suite requirements as mandated by the specification.

2. Compromising any Vendor Certificate breaks this scheme. If an attacker is able to compromise

any Vendor Certificate of a trusted vendor, then it can be used to spoof the device’s valid Vendor

Certificate. That is, this scheme is only as good as the weakest Vendor Certificate trusted by the client.

This implies that any vendors participating should implement a robust PKI as well as robust secure

key storage, as both of these are likely compromise points.

Note that similar to the Self-Signed Certificate, once a Vendor Certificate has been used to
establish a TLS session, then that session will benefit from all of the normal TLS protection
mechanisms.

Although somewhat outside the scope of CIP Security, it is useful to note that there can be other
benefits of Vendor Certificates. These certificates allow for authenticity checks on a given product and

A Practical Guide for CIP Security Device Developers 18

can be used to prevent cloned products (as a clone would presumably not have access to the PKI
needed to create a valid Vendor Certificate). Furthermore, Vendor Certificates can be used to provide
authenticity and non-repudiation of data produced by a given product (via cryptographic signing).
Depending on the product’s use cases this might be a useful feature to include, and could help to
justify the cost of implementing Vendor Certificates.

Vendor Certificates and Self-Signed Certificates are both viable options for default credentials. Vendor
Certificates do provide some additional security benefits, especially in terms of the added difficulty
of spoofing the certificate used to establish an initial TLS connection, yet at the cost of increased
complexity. Another important area of discussion revolves around a system that uses both Vendor
Certificates and Self-Signed Certificates. In this case the “weakest link” of the system in the Self-Signed
Certificates; therefore, the benefits of the Vendor Certificates are vastly reduced or even lost.

As the system will need to accept a Self-Signed Certificate, then that is the lowest acceptable security
level, and therefore can be used to launch spoofing attacks as described. Despite this, Vendor
Certificates can bring additional benefits outside of CIP Security, and should still be considered for
usage. Any decision on which implementation is used should be made through careful consideration
of requirements, as well as threats and risks on a given product. The information here can and
should be used as a basis to start the discussion around the costs and benefits to each solution, but
ultimately vendors must decide what makes the most sense for their given products.

Connection Origination
An EtherNet/IP network will be more exposed to attack when non-secure devices are allowed

to exist on the same network as secure devices. However, it is also recognized that the rate of

adoption of CIP Security amongst device suppliers will vary over time. Further, end users may

choose to continue with certain non-secure legacy devices after secure scanners are installed.

In Chapter 1 of CIP Security (Volume 8) it specifies the following: Devices that support CIP
Security must still be able to interoperate with devices that do not support CIP Security, on the
same network. It should be a matter of end user configuration to allow or disallow such a mix
of devices on the network. When mixing devices with secure and non-secure communications,
it is the end user’s responsibility to manage the device and network configuration
appropriately. The user may need to provide additional controls such as firewalls or physical
security means.

In the hybrid world where non-secure devices will coexist on a network, the Originator of
communications (Scanner) must “know” the security related communication types of its
targets. Therefore, it will be incumbent upon the scanner device vendor to offer a mechanism
to differentiate both secure and non-secure communications with devices on the EtherNet/IP
network. This section of the paper is intended for scanner device implementers.

As a matter of course, vendors will develop configuration tools to accommodate the complexities

A Practical Guide for CIP Security Device Developers 19

of CIP security configuration. Using vendor
specific configuration tools may be the preferred
mechanism to identify connection types.

The CIP defined Connection Configuration Object
(CoCo) provides a standardized method to create,
configure, and control CIP connections. To specify
a “security” connection, include the (D)TLS port
in the connection path attribute (6) of a CoCo
instance. For example, an “unsecure” connection
would have a connection path of “192.168.10.10”,
while a “secure” connection would have a
connection path of “192.168.10.10:2221”.

Debugging/Testing
Understanding TLS connection problems can

sometimes be difficult, especially when it’s not

clear what messages are actually being sent

and received. However, since CIP Security over

EtherNet/IP uses an identical application layer

with just minor deviations in the communication

compared to EtherNet/IP, the messages

communicated should be known. For the

same reason, it’s unlikely that there will be any

larger issues with the application layer data

communicated. And in the cases where there are

issues with the EtherNet/IP application data or

communications it’s better, if possible, to debug

this without running EtherNet/IP on top of TLS.

When running EtherNet/IP the traffic can easily

be captured and decoded with Wireshark using

the correct infrastructure devices. When running

CIP Security over EtherNet/IP it’s still possible

to capture and see the traffic in Wireshark, but

naturally it’s not possible to decode the traffic

and see the exact contents since it might be

encrypted. There are however some things

that should be done to help ease debugging

issues when running CIP Security over EtherNet/

IP. One option is only use NULL encryption cipher

suites, and thus only use authentication-only

communication. Volume 8 defines three (D)TLS

certificate cipher suites, one each for RAS, ECC, and

PSK with NULL encryption. When using one of those

cipher suites the data won’t be encrypted, thus the

data can be decoded using Wireshark.

In the cases when it’s not possible to change

the cipher suite, i.e. in a real installation, it’s

still possible to decode the actual traffic. This

is accomplished by providing Wireshark with

the private key, and naturally if this is in a

real installation this isn’t possible for security

reasons. Also, it’s worth mentioning that

Wireshark cannot decrypt Diffie Helleman cipher

suites. These are cipher suites with DH in their

name; among the cipher suites that Volume

8 defines only three are non Diffie Helleman

cipher suites.

The most likely issues that need to be debugged are

the initial communication and the TLS handshake.

There are many different things that initially can go

wrong with the TLS handshake when starting a new

development and porting the (D)TLS library for the

first time. The TLS handshake can easily be captured

and analyzed using Wireshark since it is not

encrypted. One tool that’s handy with doing initial

tests and debugging is OpenSSL. OpenSSL comes

with a command line client, this command

line client can be used to perform just the TLS

handshake. This is accomplished by issuing

something like:

$ openssl s_client -connect <host ip>:2221

A Practical Guide for CIP Security Device Developers 20

This command in conjunction with Wireshark can be really useful during initial development. It’s
also possible to provide the OpenSSL command line client with real certificates and keys doing
something like:

$ openssl s_client -connect <host ip>:2221 –cert certandkey.pem –key certandkey.pem

Doing this it is possible to perform the full TLS handshake and test out that the certificate and key
handling works correctly. This is useful when testing and verifying the CIP Security object and its
interaction to the (D)TLS library.

The OpenSSL command line tool can also be used to test and debug other things. It provides options
to test protocol support making it possible to verify that, for example, only TLS 1.2 is supported. There
are also options to test out server-side cipher suite support. This is useful for testing out and verifying
that the (D)TLS library has been correctly configured and setup to support the required cipher suites.

Another tool that is useful to verify the protocol support and implemented cipher suites in the
server is nmap. This command can be used to list all cipher suites and supported protocols.
This is accomplished with the following command line:

$ nmap --script ssl-enum-ciphers -p 2221 <host ip>

Performance Considerations
Adding CIP Security to a product is associated with a cost regarding high performance requirements

on the processing unit of the product. Before actually implementing and testing CIP Security it’s

impossible to tell if an existing product can handle the performance degradation that TLS adds to CIP

Security over EtherNet/IP. Running CIP Security over EtherNet/IP can be done on almost any processing

unit but on smaller low end 8-bit microprocessors the product would likely end up being far too slow

to be considered usable.

However, many products (probably the majority) that have been developed in the last several years are

built using 32-bit microprocessors. These are also most likely to be the products in which CIP Security is

supported. Those devices are most likely capable of handling the performance degradation that comes

with TLS and CIP Security over EtherNet/IP. It’s impossible to provide any rule of thumb on whether a

certain processing unit will be capable of handling the addition of CIP Security. The reason being that

there are many factors that vary and influence the overall performance requirements.

Some of those factors are: the compiler being used and how well it can optimize the code, the

performance and the bandwidth between the processing unit and the memory, how well the existing

TCP/IP and EtherNet/IP stack perform, how well the TLS library used performs on the platform being

A Practical Guide for CIP Security Device Developers 21

used, if the processing unit has hardware

accelerators for the cryptographic primitives,

and if the compiler and TLS library are capable of

making use of those. Besides this there are other

factors that may affect the overall performance,

such as which development tools and which

specific platform were used. Many of those items

can be overcome and worked around to make

the overall product perform better.

There are some specific things that are of

interest when considering the performance, the

connection startup, and the data flow during

the connection. These are things that can be

optimized in different ways and may need work

to create a usable and well working product.

During the connection startup the TLS handshake

takes place. This is when the two endpoints in the

communication negotiate the details of which

encryption algorithm and cryptographic keys to

use before the first byte of data is transmitted.

Also during this time the two endpoints are

authenticated which is done using public-key

cryptography. This is a computationally heavy

process that requires a lot of processing power

from both sides in the communication.

During the data flow, i.e. primarily class 0/1

communication, two things impact the data

latency: bulk encryption and message integrity.

For the bulk data encryption this can be disabled

by the end user by selecting one of the NULL

encryption cipher suites. This however provides

no confidentiality, but in many applications that’s

an acceptable tradeoff. For the message integrity

part, which is a hash function, it can in many

cases be optimized. The optimization can be

done either in C or using an assembly-language

optimized implementation.

In many processing units there are dedicated

cryptographic hardware accelerators.

Those hardware accelerators can provide

functionality to assist the calculation of the

different cryptographic primitives used for

A Practical Guide for CIP Security Device Developers 22

TLS. The hardware assisted support varies a lot and has to be looked at closely when choosing a

processing unit for a new product. Some processing units provide hardware acceleration for all

the cryptographic primitives, such as hash-functions, symmetric key algorithms, and public key

algorithms – both Elliptic Curve and RSA. In those cases it’s possible to offload the main processing

unit a lot and achieve near line speed cryptography for both bulk data encryption and message

integrity.

Using hardware assisted cryptography naturally comes with a higher per unit cost. But considering

the importance of CIP Security this is probably a good thing to consider when designing new

products. Many silicon vendors offer pin compatible processing units with and without hardware

assisted cryptography engines, thus it’s possible to add the hardware assisted option later on and

release this as a new updated product with higher and better capabilities. This can be done without

having to redesign the hardware, but just by mounting a different part during manufacturing. This is

discussed further in the next section, “Hardware Architecture Considerations”.

Hardware Architecture Considerations
For CIP Security there are three main areas in which hardware may be particularly beneficial:

 ▪ Hardware that provides secure key storage

 ▪ Hardware that provides cryptographic acceleration

 ▪ Hardware that provides entropy generation

These hardware components are not required for CIP Security, but it is likely that many

products would benefit from this additional hardware. Each of these is discussed in more

detail within this section. Note that a single piece of hardware may perform more than one

function; these functions would not necessarily need to be implemented as three separate

hardware solutions. No matter what hardware is selected, there are some issues that need to

be addressed regardless of the functionality included in the hardware:

 ▪ Trust boundaries: Some hardware is within a processor, some is on a printed

circuit board (PCB), and some is easily removable (as in on a USB stick). Which is

chosen depends on use case as well as the boundary of trust.

 ▪ Performance: Depending on the type of countermeasures employed and the underlying

technology, hardware based secure key storage can reduce overall system performance. It

is important to understand if the performance is acceptable for the given system.

 ▪ Capabilities: The key storage hardware may only support a limited number of algorithms

and/or keys. The CIP Security spec limits what must be supported, but it might be

A Practical Guide for CIP Security Device Developers 23

desirable to have other algorithms for both future usage and other uses within a product.

 ▪ Cost: Including extra hardware on a product is certainly not free, an organization will need

to decide what cost they are willing to pay to have the extra capabilities given by secure

storage hardware.

 ▪ Contention: More than one part of the system may need to use a given hardware

resource. Mechanisms for dealing with this are an important consideration, whether

they be hardware-based, software-based, or some combination thereof.

Beyond these general issues, there are considerations specific to each hardware function:

Secure Key Storage Hardware
As discussed in the section on secure identity, if a product implements a Vendor Certificate then

secure key storage is necessary to protect the private key associated with this certificate. Although

software based options are available for this, hardware generally provides a more robust protection.

Hardware based key storage is useful beyond just protecting the key associated with the vendor

certificate. Keys associated with the certificate sent to a device by a user (for CIP Security) can also

be protected by hardware based secure key storage. Best practices denote that the key is generated

by the device and the private portion of the key never leaves the device. Hardware based

secure key storage allows a device to achieve this for the keys associated with (D)TLS

communications. Furthermore, many devices have other uses for protecting data, of course

hardware based secure key storage may be used to protect other data beyond that associated with (D)

TLS communications.

Cryptographic Acceleration Hardware
CIP Security involves a significant amount of cryptographic operations on communications packets,

which of course results in a performance impact. However, a product that includes specialized

hardware for cryptographic acceleration can reduce or even eliminate the burden of these

cryptographic operations on the main processor. There are two essential categories of cryptographic

operations that are needed in CIP Security. One is the public key, or asymmetric operations. These are

generally done during connection handshaking; examples include RSA, ECC, Diffie Hellman, etc. The

other are symmetric operations, which are generally during the lifetime of the connection

(once the handshaking is complete).

Examples include AES, SHA, etc. Depending on the needs of the device, hardware can be used to assist

either or both of these operations. Note that in general, the asymmetric operations take longer and

place a higher burden on the system. However, as these are mainly done as part of the connection

handshake their impact is limited. The symmetric operations are generally faster, but occur much more

often as there is at least one operation done on every packet that is sent or received. Throughput and

latency targets are of course product specific, but hardware can be used to help achieve these targets.

The following flowchart can aid in the decision-making process around what type of cryptographic

accelerators to use:

A Practical Guide for CIP Security Device Developers 24

Figure 4: Hardware Cryptography Decision Flow-Chart

New product /

Hardware

Update
No

Is packet latency

a concern?

Is connection

origination time a

concern?

Add Symmetric
Cryptography/

HMAC

Assistance

Add Asymmetric
Cryptography

Assistance

Yes

Yes

Yes

Yes

No Update Possible

No

Make Nessary

Hardware Updates

No

A Practical Guide for CIP Security Device Developers 25

Entropy Generation
Hardware

Another important area for hardware assistance

is entropy generation. If possible, using a hard-

ware based source for randomness is generally

the best option. As such, when considering what

hardware to include in a product a hardware

based random number generator should cer-

tainly be kept in mind. More discussion on this is

given below in the Entropy Sources section.

Entropy Sources
True Random
Number Generators
Generation and management of

cryptographically strong entropy is essential for

the security of (D)TLS sessions. The CIP Security

specification mentions that hardware based

entropy sources, or True Random Number

Generators, are to be preferred over any software

based sources. Therefore, it is ideal if a dedicated

piece of hardware for entropy generation can

be placed on the product. Even more ideal is

for that hardware to include countermeasure

protections such that the entropy source is well

protected, even in the case of other parts of the

system being compromised by an attacker. Keys

generated by this hardware should stay within

the hardware for the key’s lifetime.

Furthermore, the hardware should be designed

such that it is compliant with well-known

standards for entropy generation (such as NIST SP

800-90). Although not generally necessary, more

than one True Random Number Generator (TRNG)

within a product may provide further security

advantages through redundant mechanisms and

diversity of sources, albeit at greater product cost.

Lack of Specialized Hardware
The above describes the ideal entropy

generation support for CIP Security.

However, it is recognized that this may

not be feasible for all products. Some products

may need to gather entropy from sources other

than a True Random Number Generator. If this is

the case it is still possible to gather entropy on a

product (although maybe not at the same quality

as a True Random Number Generator). This

section will provide some general guidelines for

gathering entropy on such a product.

Use Physical Sources

All products run (at some point) on some sort

A Practical Guide for CIP Security Device Developers 26

of hardware. Hardware is necessarily a physical

entity, subject to the laws and constraints of

physics. As such, there is a degree of randomness

and entropy to hardware. Inspect the system

for hardware which may exhibit some form of

randomness. Likely areas of this include oscillator

drift, RAM decay, and various monitoring/

diagnostic circuitry (for example a temperature

monitor). Generally, the higher the resolution

these sources are, the more randomness they

will exhibit (for example, a temperature monitor

that reports in degrees Celsius to more than one

decimal point).

Combine Sources

The more physical sources that can be

combined generally yields better entropy,

unless a second source degrades the entropy

of the other more high quality sources. This

also provides a diversity of input; even if an

attacker compromises one entropy source

to behave in a predictable manner the other

sources can still provide entropy such that

the product functions properly and robustly.

Furthermore, some sources may be slower

to generate high quality entropy than others.

With more than one source used, this allows

entropy to be available without being subject

to the limitations of the slowest source.

Test Sources

It is important to run tests that give a measure

of the quality of the entropy. NIST SP 800-90 B

provides extensive tests for entropy sources.

All sources should be tested to determine if

there are enough suitable sources for

the product. Of course what constitutes a

suitable source is dependent on the product’s

security posture, although general guidance is

given within the NIST publication.

Cipher Suites
One integral part of the TLS handshake is when

the client provides the server with a list of its

supported cipher suites. The server selects one of

the offered cipher suites that will be used during

this connection. If no acceptable cipher suites

are presented to the server, the TLS handshake

will fail and the connection will be closed. Once

the cipher suite has been agreed on and the

connection has been established, the cipher suite

insures the privacy, authentication, and integrity

for the data that passes between the client and

server over the (D)TLS session (connection).

The cipher suite is what determines the

level of security for the (D)TLS session.

Some cipher suites even provide weak

security and should not be used. For this

reason it’s essential that the correct cipher

suites are used and it’s of the highest

importance to be careful in the cipher suites

offered and accepted. The cipher suites

defined by CIP Security for EtherNet/IP

should be considered reasonable in

terms of providing security.

Since the cipher suite determines the level of

strength in the cryptography algorithms used,

they also highly impact the performance of the

data flow on the (D)TLS session. Thus higher

cryptographic strength picked by using a

different cipher suite might degrade the packets

per second a device is capable of producing and

consuming. For authentication and key exchange

the cipher suite defines the asymmetric algorithm

used. From the cipher suites defined by CIP

A Practical Guide for CIP Security Device Developers 27

Security for EtherNet/IP this could be RSA or Elliptic Curve. RSA is generally more used and widely

deployed than Elliptic Curve. Elliptic Curve on the other hand offers the same or better security with

smaller key sizes. As a consequence of this the performance using Elliptic Curve can be higher.

The bulk data encryption in CIP Security for EtherNet/IP, when enabled, relies on AES. AES

is a standard for encryption and it contains a lot of variations. Though this standard is what’s

adopted by the US government and now used worldwide. What’s defined for CIP Security is

considered providing reasonable security for confidentiality.

The data integrity is provided by HMAC and in the case for CIP Security for EtherNet/IP SHA-1 or SHA-2.

Both SHA-1 and SHA-2 are accepted by NIST and considered to provide enough security.

Summary of Cipher Suits Used by CIP Security for EtherNet/IP

Cipher Suite Description

TLS_RSA_WITH_NULL_SHA256 RSA for key exchange; null encryption;
SHA256 for message integrity. Encryption is
not provided.

TLS_RSA_WITH_AES_128_CBC_
SHA256

RSA for key exchange. AES 128 for message
encryption, SHA256 for message integrity.

TLS_RSA_WITH_AES_256_CBC_
SHA256

RSA for key exchange. AES 256 for
message encryption, SHA256 for
message integrity.

TLS_ECDHE_ECDSA_WITH_NULL_
SHA

ECDHE_ECDSA for key exchange; null
encryption; SHA1 for message integrity.
Encryption is not provided.

TLS_ECDHE_ECDSA_WITH_AES_128_
CBC_SHA256

ECDHE_ECDSA for key exchange. AES
128 for message encryption, SHA256 for
message integrity.

TLS_ECDHE_ECDSA_WITH_AES_256_
CBC_SHA384

ECDHE_ECDSA for key exchange. AES
256 for message encryption, SHA256 for
message integrity.

TLS_ECDHE_PSK_WITH_NULL_
SHA256

ECDHE in conjunction with PSK for key
exchange; null encryption; SHA256 for
message integrity. Encryption is not
provided.

TLS_ECDHE_PSK_WITH_AES_128_
CBC_SHA256

ECDHE in conjunction with PSK for
key exchange. AES 128 for message
encryption, SHA256 for message
integrity.

A Practical Guide for CIP Security Device Developers 28

NIST Cryptography Strengths

The following table (included from NIST SP 800-57: Recommendation for Key Management)

gives general guidance on the strength of cryptographic keys based on their key length.

Obviously longer keys provide better security, yet what algorithm is used is also relevant to

the overall strength.

Considerations for System Time
As a part of a X.509 v3 certificate there’s a field named Validity which contains two dates,

named notBefore and notAfter. The validity period for a certificate is the time from notBefore

through notAfter, inclusive. This period is set when the certificate is generated and outside

of this period of time, the certificate is invalid.

In many of the control applications and systems controlled by EtherNet/IP there’s no need for

a global system time. Generally the controller’s notion of time is sufficient, and there’s no need

for a wider notion of time in the slave nodes. For this reason, most of the embedded systems on

which EtherNet/IP products are built today have no notion of the global system time or a real time

clock (RTC). Even though a CIP interface to IEEE 1588, Precision Clock Synchronization Protocol

for Networked Measurement and Control Systems, is defined only niche EtherNet/IP products

implement this for use in special applications. We can expect that the number of EtherNet/IP

products implementing IEEE 1588 will increase over time and thus also the number of devices that

will have a global notion of time.

Security
Strength

Symmetric
key
algorithms

FFC (e.g.,
DSA, D-H)

IFC
(e.g., RSA)

ECC (e.g.,
ECDSA)

≤ 80 2TDEA21 L = 1024
N = 160

k = 1024 f = 160-223

112 3TDEA L = 2048
N = 224

k = 2048 f = 224-255

128 AES-128 L = 3072
N = 256

k = 3072 f = 256-383

192 AES-192 L = 7680
N = 384

k = 7680 f = 384-511

256 AES-256 L = 15360
N = 512

k = 15360 f = 512+

A Practical Guide for CIP Security Device Developers 29

To make use of the validity in a X.509 v3 certificate, the EtherNet/IP device verifying the peer

needs to be aware of the system time. Since the majority of EtherNet/IP devices don’t support

this today there’s an attribute in the EtherNet/IP Security Object that allows the user to enable

and disable the certificate expiration check. Furthermore, this attribute is by default set to

disabled, meaning that the peer’s certificate expiration shall not be checked.

An EtherNet/IP device that implements IEEE 1588 or NTP to obtain the system time can

enable the option to allow for the certificate expiration check. That the certificate’s validity is

checked is preferable to making sure that old and expired certificates are used.

It should be noted that IEEE 1588 doesn’t include any form of secure authentication

mechanisms. Although recent versions of NTP provide for the possibility of authentication, in

practice that’s not used. Most systems trust unauthenticated NTP replies to set the system

clock. This mean that a Man-In-The-Middle attacker can control a device’s clock, and by

doing so violate the security properties for TLS.

Lately, initiatives have been done to develop secure alternatives to NTP. Google is funding a

project developing a secure time protocol called roughtime. The protocol aims to provide a

rough time synchronization in a secure way. The “rough” time synchronization means that it’s

not providing a precise and perfect time synchronization, rather it provides a synchronization

within 10 seconds of the correct time, which is more than enough for use with security.

Roughtime is a simple and light weight protocol that potentially could become the open

secure alternative to NTP.

In the future when there’s a secure and widespread alternative to NTP, which possibly could

be roughtime, CIP Security for EtherNet/IP should probably standardize on that. And at some

point, we recommend that as a suggested supported protocol for all devices implementing

CIP Security for EtherNet/IP.

References

[1] RFC5246, Transport Layer Security (TLS) Protocol Version 1.2, Aug 2008

[2] RFC6347, Datagram Transport Layer Security Version 1.2, Jan 2012

[3] ODVA, Inc. The CIP Networks Library, Volume 8: CIP Security™, PUB00299

[4] NIST, SP 800-57. Recommendation for Key Management, Part 1, Rev 4

The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and those
responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions, and
recommendations expressed herein for intended use. Copyright ©2017 ODVA, Inc. All rights reserved. For permission to reproduce
excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840 FAX +1
734-922-0027 EMAIL odva@odva.org WEB www.odva.org. CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP Safety,
CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other trademarks are
property of their respective owners.

