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Abstract
CIP Security (Profile 1) adds transport layer security to the CIP protocol, and has a large, system-wide impact 

on CIP based products. As such, there are many considerations that product developers must take into 

account when designing CIP Security enabled products. Many of these issues can have potential security 

implications and as a result require careful thought. Although the ODVA CIP Security specification provides 

sufficient information for the implementation of this protocol, it is still beneficial to product developers to 

have some additional guidance at their disposal. The aim of this paper is to provide non-normative guidance 

around many of the important considerations that have an impact on CIP Security implementations. This 

paper does not seek to replace or replicate the information within the CIP Security specification, but rather 

provide additional guidance and information. Furthermore, as this paper is non-normative, the information 

described within is not necessary for compliance (unless it is also stated within the official CIP Security 

specification).
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Definition of Terms

AES: 
Advanced Encryption Standard

Symmetric Encryption Algorithm designed to 
be efficient with both hardware and software. 
Supports 128 bit data blocks and key sizes of 
128/192/256 bits.

BSD:  
Berkely Source Distribution

Derivative works from original source are not 
required to be distributed under the original terms, 
nor is the owner required to make source code 
freely available.

Certificate Authority

A trusted entity that issues electronic documents 
that verifies a digital entity’s identity on the 
internet.

Cipher Suite

Examples supported in CIP Security Specification: 
RSA, ECC, PSK, NULL.

CoCo: 
Connection Configuration Object

CIP defined object that may be used to configure 
a device to receive both secure and non-secure 
communication.

CVE: 
Common Vulnerability and Exposure

Publically available list of security threats with 
unique identifiers (CVE names, numbers and 
ID’s). Database maintained by Mitre corporation 
and the National Cybersecurity FFRDC.

(D)TLS: 
Datagram Transport Layer Security

Based on the TLS protocol, (D)TLS provides 
communication security over UDP. Reference IETF 
RFC 6347.

Digital Certificate

A digital certificate is an electronic “passport” that 
allows a person, computer, or organization to 
exchange information securely over the Internet 
using the public key infrastructure (PKI).

Digital Certificate, Self-Signed

Certificate signed by the same entity whose 
identity it certifies. (i.e. signed with its own private 
key.) Used when parties know each other and 
trust to protect key. Hardware based key storage 
not required.

Digital Certificate, Vendor

A self-signed certificate that adds product level 
public keys and secure key storage.

Digital Signature

The digital equivalent of handwritten 
signature or stamped seal to validate identity. 
It is a mathematical technique to validate the 
authenticity and integrity of a message or digital 
content. It also ensures the authenticity of the 
source such that service cannot be denied (see 
non-repudiation.) Digital signatures are based 
on public key infrastructure (see PKI.)
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ECC: 
Elliptic Curve Cryptography

Public key cryptography based on algebraic 
structure of elliptic curves.

Encryption, Symmetric

Form of encryption using paired keys. One key is 
known to everyone, the public key and the other 
is kept secret, known as the private key. One 
key encrypts a message and the opposite key 
decrypts the message. RSA, ECC, Diffie Hellman

Encryption, Symmetric

Form of encryption using single key to both 
encrypt and decrypt data. Examples: AES, SHA

Entropy Source 

True random number generator, often hardware 
generated for cryptography purposes. NIST SP 
800-90

GCC: 
GNU Compiler Collection

GPL: 
General Public License

Software whose source code is available at no 
cost for anyone to use for any purpose.

Hash Function

Any function that maps data of arbitrary size to 
fixed length data. A cryptographic hash function is 
designed to be one way such that it is infeasible 
to derive the original number. Keys in public key 
encryption are based on hash number.

HMAC: 
Hash-Function Message Authentication Code

Authentication code based on two inputs: the 
message and the key. The output is a code 
that cannot be used by attackers to derive the 
source. HMAC is an integral piece of TLS security 
architecture.

Message Authentication

Confirmation that the message came from the 
stated sender (its authenticity) and has not been 
changed in transit (its integrity). In CIP Security 
message authentication is achieved via TLS and 
the HMAC function.

MAC: 
Message Authentication Code

A message authentication code (MAC) is a short 
piece of information (e.g. code corresponding 
to a specific product serial number) used to 
authenticate a message. 

Message Confidentiality

Assurance that the messages between two 
entities cannot be monitored by untrusted entities. 
Message confidentiality is achieved in CIP 
Security via the TLS Algorithm.

Message Integrity

Assurance that the message passed between two 
trusted entities has not been corrupted or altered. 
Message integrity is achieved in CIP Security via 
the TLS Algorithm.

Definition of Terms
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Non-Repudiation

Repudiation is the rejection of an agreement. 
Nonrepudiation in cyber security refers to the 
ability to ensure that the party to a communication 
cannot deny the authenticity of a digital signature.

NULL

NULL Encryption cipher suite. No encryption 
used, cipher used for authentication 
communication only, often during debug/testing 
process.

PKI: 
Public Key Infrastructure

A public key infrastructure (PKI) is a set of 
roles, policies, and procedures needed to create, 
manage, distribute, use, store, and revoke digital 
certificates and manage public-key encryption. 
In cryptography, a PKI is an arrangement that 
binds public keys with respective user identities 
by means of a certificate authority (CA).

PSK: 
Pre Shared Key Encryption

A shared secret key that was previously shared 
between two parties used for encryption and 
decryption of data.

RSA

Public key asymmetric encryption algorithm. RSA 
acronym based on names of authors Rivest, Shamir, 
and Adleman.

SHA: 
Secure Hash Algorithm

Hash function maps arbitrary data to data of a 
fixed size. The SHA family of algorithms designed 
by the NSA are used in creating digital signatures.

Spoofing

In network security, an attacker masquerades as 
a legitimate entity on the network in order to gain 
access to the entity’s system or information.

SSL: 
Secure Socket Layer

Standard for establishing a secure link between 
two entities on a network. Transport Layer Security 
(TLS) standards have superseded SSL. However, 
the term “SSL” is often used to refer to either the 
earlier SSL protocol as well as the newer TLS 
protocol and libraries.

TCP: 
Transport Control Protocol

Provides connection management and guaranteed 
end to end delivery of data between two network 
devices. Transport Layer Security (TLS) uses TCP 
services. Reference IETF RFC 5246.

TLS: 
Transport Layer Security

Transport Layer Security (TLS) is the successor 
cryptographic protocol to Secure Socket Layer 
(SSL), that provides secure connections over a 
computer network. Both are often referred to as 
SSL. Reference IETF RFC 5246.

UDP: 
User Datagram Protocol

Connectionless data transmission protocol. 
D(TLS) uses UDP services

X.509

Standard for a Digital security certificate using 
the PKI to verify that the public key belongs to the 
entity contained within the certificate. (Standards 
Organization: United Nations ITU-T)

Definition of Terms
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Introduction
Adding CIP Security to a new or existing project is a serious undertaking that involves several 

important decisions and considerations. It is important to understand the key points in these 

decisions, and ramifications that a particular path may have with regard to both CIP Security 

and the overall product.

Within this paper, several considerations are raised and discussed, along with potential options 

being offered where appropriate. Although it is not possible to exhaustively list all possible 

decisions and impacts that CIP Security would have to a product, this paper aims to provide 

a reasonable overview to help product developers in adding CIP Security support to a new or 

existing product.

Library Considerations
The (D)TLS library is one of the core components in CIP Security as it provides a secure 

transport mechanism using the standard Transport Layer Security (TLS) and Datagram 

Transport Layer Security (DTLS) protocols. TLS and DTLS make use of the IETF-standard, RFC 

5246 and RFC 6347 respectively, protocols in order to provide a secure transport for EtherNet/IP 

traffic. The (D)TLS library sits between the TCP/IP stack and the application protocol (EtherNet/

IP over TLS and DTLS).

The (D)TLS library is a large and complex piece of software and it is crucial that all parts implemented 

in this library are designed with security in mind. Even the smallest and simplest design flaws or bugs 

in the (D)TLS library might compromise the security of  the device and in the end the whole system. 

For those reasons it is not recommended to roll your own (D)TLS library. Instead it is recommended to 

obtain an existing and well known (D)TLS library.

Figure 1:
EtherNet/IP over TLS and

 DTLS Layering
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There are many things, ranging from cost and license 

for the library to size and performance, to consider 

when evaluating and choosing a (D)TLS library. This 

section will touch on some of the things that should be 

considered when choosing a (D)TLS library. Since there 

are many factors to consider and many of them are 

business related, it is not possible to give any specific 

recommendation. There are many (D)TLS libraries 

available from different vendors and sources all with 

their own respective pros and cons. Therefore, each 

vendor should select a (D)TLS library based on their 

needs.

In this paper four different (D)TLS libraries have 

been investigated. They have not been compared 

head to head but rather used as references, giving 

directions and pointers regarding the different things 

looked at in the library considerations section. The 

libraries that have been of most focus are the ones 

targeting embedded systems running on a smaller 

microcontroller. The four libraries that have been looked 

at are:

▪ Op enSSL

▪ wolfSSL

▪ mbed TLS (formerly known as PolarSSL)

▪ MatrixSSL

Cost and License

There are both free and commercial (D)

TLS libraries, some of the libraries are available under 

a dual-license model meaning there is a free and open 

source version as well as a commercial license version 

that can be purchased.

One of the most well-known and used libraries, 

OpenSSL, is a free and open source library. Since 

OpenSSL is open source, anyone can view the code, 

and, for this reason, security related issues with the 

library can possibly be discovered earlier. The dual-

license libraries use the same idea, making the source 

code publicly available so anyone can view it and thus 

possibly having security related issues found sooner.

The dual-license libraries are usually published under 

GPL, thus making the libraries free to use as long as 

the source code they’re integrated in is also published 

publicly. In most cases this is not an acceptable 

license for most companies building products using 

CIP Security. Instead the company behind the dual-

license library provides a paid version of the library 

and, in this case, it comes under a different type of 

license model. The companies offer different types 

of the paid licenses, ranging from a per-unit cost 

to full buy-outs. The dual-license is attractive since 

it’s possible to start out using the free version for 

testing, initial development, and prototyping and 

when getting closer to finalizing the product a paid 

license can be obtained, making it possible to sell the 

product without having to disclose the full source 

code of the product.

Some of the free and open source libraries are 

available under different licenses that allow them to 

be used for free and without any more restrictions 

than maintaining a copyright notice in the written 

documentation. OpenSSL for example is distributed 

under a BSD like license.

Support

Choosing a commercial (D)TLS library generally 

provides some sort of professional support from the 

library vendor. And, as with all cases when purchasing 

software, the support of it might come directly from 

the vendor of the library or from the distributor. That 

of course can be a big difference, especially in the 
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case of (D)TLS libraries which are rather large 

and complicated pieces of software.

The non-commercial (D)TLS libraries generally 

have a large and active community behind them. And 

the support in those cases comes from the library 

developers and other users of the library. This doesn’t 

necessarily mean that it’s of less help than the support 

expected from a paid and commercial library. However, 

the amount of support and the time it would take 

to get help from the community behind the non-

commercial libraries may vary between the libraries 

and also when the help is needed.

Since the (D)TLS libraries can be configured in many 

different ways and also provide a lot of function 

calls, it’s important that they come with good 

documentation. The level of documentation differs a 

lot between libraries.

OpenSSL has a lot of well written documentation which 

is easy to access and use when already up and running. 

However, it does not provide a good introduction to 

get started and set up things, but this information can 

be found other places.

MatrixSSL, mbed TLS, and wolfSSL all have good and 

useful documentation on how to port, setup, and get 

started with the libraries. They also come with easy 

example applications for both clients and servers. The 

API documentation varies a lot between the libraries 

but are overall easy enough to understand.

Reputation

That the (D)TLS library is well-known and widely used 

is important to provide assurance that it’s possible to 

use the library as a building block in creating a secure 

product. OpenSSL is probably the most well-known 

library around and it’s being used in Linux and Unix 

distributions, amongst others. It also has a good 

reputation of being stable and well tested.

MatrixSSL, mbed TLS, and wolfSSL have been around 

for many years and the companies behind the libraries 

have been successful selling the libraries. They all have 

references to well-known companies and projects 

using their libraries.
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Vulnerability Management

Having a well-defined and working 

procedure for dealing with vulnerabilities is important 

for the makers of a (D)TLS library. When a vulnerability 

is discovered and reported the makers of the library 

must act in a timely manner to fix the vulnerability in 

the library.

The vulnerability management process should include 

procedures for how to deal with reported common 

known vulnerabilities, Common Vulnerability and 

Exposures or CVE for short. A CVE Identifier is a unique 

number that can be used over different security 

advisories by different vendors to refer to the same 

issue.

OpenSSL, mbed TLS, and wolfSSL all list 

the CVEs that affect certain versions of the 

library and in what versions they have been 

addressed. By doing this users of the library can see 

that the library makers actively update and correct 

issues and vulnerabilities in the library.

Another thing that’s important to consider when it 

comes to a library’s vulnerability management process 

is the ability to report possible issues. It is important 

that vulnerabilities are discovered and that the makers 

of the library work with the reporter to find out and 

determine if the issue is real and a valid vulnerability 

for the library.

There should also be a way to subscribe to updates 

and changes in the library so potential vulnerability 

fixes are received quickly, instead of actively having to 

go out and check for updates at the library’s website.

Footprint

Depending on the type of device that is implementing 

the library the memory footprint might be very 

important. In the smaller embedded devices that 

run EtherNet/IP there might not be enough memory, 

both non-volatile and RAM, to implement a (D)TLS 

library. Larger devices like connection originators, 

i.e. PLCs, generally have more memory and thus the 

memory footprint of the library is of less importance. 

Also, since the (D)TLS library is a large piece of 

software, adding that to an existing product that 

doesn’t support CIP Security over EtherNet/IP might 

be an issue. For that reason the footprint of the (D)

TLS library is of high importance.

There are some (D)TLS libraries that are specifically 

designed for embedded devices. Those libraries 

generally consume less memory, both non-volatile 

memory and RAM, than libraries designed 

to run on a desktop computer. Also the 

libraries designed for embedded systems 

often can be configured to use its own heap. 

This can, in some cases, make the design easier if 

the existing design doesn’t already have dynamic 

memory management. The libraries designed 

for desktop computers rely on existing dynamic 

memory systems and system calls. However, the 

embedded libraries don’t make use of this operating 

system infrastructure, and often can be configured 

to run in an environment with no operating system 

whatsoever.

Since embedded devices usually don’t have a lot of 

memory it’s important that the library is scalable so 

it can be configured to only include functionality 

required for CIP Security over EtherNet/IP. The (D)TLS 

libraries that are designed with the intention of being 

used in embedded systems generally provide an easy 

way to enable and disable functionality and thus 

allow them to be tailored and configured in the most 

effective way.

Libraries like OpenSSL that were designed to be 
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used as a (D)TLS library for computers generally don’t provide the developer with as many 

configuration options to fine-tune them to the lowest level. However, since those libraries 

generally are used in more capable and higher performant devices that might run Linux or 

similar, the memory footprint isn’t likely an issue in those cases.

Capabilities
CIP Security over EtherNet/IP puts some requirements on the (D)TLS library. The key items that 

the (D)TLS library has to support in order to be able to use it for implementing CIP Security over 

EtherNet/IP are:

 ▪ TLS has to be at least version 1.2

 ▪ DTLS has to be at least version 1.2

 ▪ Cipher suite requirements as mandated by the specification

 ▪ Allow the use of pre-shared keys or X.509 certificates for endpoint authentication

 ▪ Allow use of either RSA or ECC public/private key pairs

 ▪ Provide data encryption (in addition to data integrity), or data integrity 

only (null encryption)

Performance
In order to implement the TLS protocol the (D)TLS library needs to perform a number of 

supporting cryptography operations and message digest operations, such as the SHA-256 

hash algorithm. Those operations are all computation and processing heavy. And in order to 

implement CIP Security over EtherNet/IP on an embedded device performance is extremely 

important. 

The TLS protocol requires a lot of processing power. However, processing power might not be 

the first thing considered when choosing a microcontroller for an embedded system, so time 

might have to be spent on optimizing performance. 

It’s been shown that it’s possible to run CIP Security over EtherNet/IP on low end 

microcontrollers like Cortex-M3. But this generally requires that work is done to profile the 

system and analyze where the time is spent when performing the cryptography 

operations and message digest operations. 

The code where the most time is spent could potentially be optimized or placed 

in faster memory. Also, some microcontrollers have hardware accelerators for performing 

cryptography and message digest functions (see the section on hardware architecture 

for more information on this). The (D)TLS library can then be ported to use the hardware 

accelerators instead of code that executes on the micro controller. This can in many cases 
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dramatically improve performance and at the same 

time decrease the memory footprint. Some (D)

TLS libraries have porting functions to make the 

integration job easier.

(D)TLS libraries also make heavy use of a 

heap and a lot of the cryptography and message 

digest functions are performed against data on 

that heap. Thus it’s important that the heap is 

placed in a memory with high bandwidth and 

latency against the microcontroller or CPU. 

Placing the heap in a specific memory location 

is naturally easier to do if the library makes use 

of a dedicated heap.

Non-scientific tests have been performed to 

compare the performance of mbed TLS on a 

microcontroller system, using Cortex-M3, and a 

system running an application processor, dual 

Cortex-A8. No efforts were made to optimize the 

code, i.e. the library was compiled out of the box 

using the standard configuration options. 

In both cases GCC was used to compile the code 

and the same optimization level was used. The 

application process system was running Linux and 

the embedded system ran a home grown RTOS. The 

tests showed that the raw processing power of the 

application processor did make a big difference in 

performance. 

On the application processor system, the initial TLS 

handshake took tenths of milliseconds compared 

to seconds on the microcontroller system. That 

said, it’s possible to optimize performance on the 

microcontroller to achieve an initial TLS handshake 

in the range of 100 milliseconds.

Technology
The libraries reviewed in this section were all written 

in C and for that reason likely easy to integrate in 

the environment most EtherNet/IP products are 

developed in. Beyond the four (D)TLS libraries 

mentioned here there are many other libraries, some 

of them written in other languages. Based on the 

environment used to implement a certain product, 

research needs to be done to find a (D)TLS library 

suited for that specific environment. 

Besides this, the smaller (D)TLS libraries that are 

designed to be used in embedded systems, like 

MatrixSSL, mbed TLS, and wolfSSL are all written in 

a way where it’s possible to run them bare-metal, i.e. 

without an operating system underneath.

Depending on the runtime environment where the 

libraries are intended to be used, this is 

something that needs to be considered. 

If using an operating system that provides all of 

the APIs and libraries that OpenSSL expects, it 

would likely make it easy to integrate. If the product 

doesn’t have an operating system or just a simple 

RTOS without standardized system calls and 

libraries, then it would likely make it easier to use the 

smaller libraries intended for embedded systems. 

Summary of Library Considerations

The table below gives a brief summary of the 

sections covered above related to the library 

considerations. The library consideration section and 

table will help to assist choosing a library. However, 

since there are many parameters besides what is 

discussed in this paper that affect the choice of 

library, each vendor should consider their needs and 

do a thorough investigation.
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Summary of Library Considerations Table

Open SSL wolfSSL mbed TLS MatrixSSL

Cost and License Free Dual-License Free Dual-License

Support Good Good Good Good

Reputation Good Okay Okay Okay

Vulnerability 
Management

Good Good Good Unknown

Footprint HIgh Low Low Low

Capabilites Good Good Good Low

Performance Unknown Unknown Unknown Unknown

Technology Good Good Good Good
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Figure 2: Commissioning Credentials

Key Management and Secure Identity
(D)TLS connections always start with at least one side having security credentials (which 

are either a PSK or certificate). The general model of CIP Security is for the user to provision 

a product with credentials that can be used to make and/or receive (D)TLS connections. 

However, this begs the question: how can security be applied to the connection that is used 

to provision the product with these credentials? A set of default credentials are necessary to 

bootstrap this secure connection. Using the default credentials, a secure connection is made 

to provision the device with its initial credentials (either a PSK or a certificate), as well as any 

other appropriate CIP Security configuration. Once this initial CIP Security configuration is 

completed, the default credentials are no longer used to create secure connections (unless 

the product is returned to a default out-of-box state).
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There currently exist two options for the default identity. One is a Self-Signed 

Certificate, and the other is a Vendor Certificate. Each of these options has 

advantages and disadvantages which will be discussed in more detail. However, it is 

necessary first to understand the threats against initial commissioning.

There are two types of credentials that can be commissioned: a PSK or a certificate. 

The commissioning for each of these types of credentials has unique risks and threats. 

A certificate is public information, and a PSK is private. Therefore, when a PSK is commissioned there 

is a risk to the confidentiality of the communication, as an attacker who can discover the PSK value 

can both communicate on the system, as well as perform spoofing, data tampering, and information 

disclosure attacks on devices using the PSK.

For certificate based credentials, there is no need for confidentiality during commissioning, 

as all of the information within a certificate is public (note that there may still be a marginal 

benefit to this confidential communications to prevent the attacker from knowing what type 

of configuration the system is using altogether). However, an attacker that can launch a data 

tampering or spoofing attack on the connection used to commission the initial credentials can 

certainly compromise the device being commissioned. The attacker would have the ability to 

tie the certificate to a key under his/her control, or to tamper with the device’s credentials.

Table 2: Credentials vs. Threats

Threat

Credential Type Data Tampering
Information 
Disclosure

Spoofing

PSK Applies Applies Applies

Certificate Applies Doesn’t Apply Applies
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With the threats enumerated, it is possible to 

briefly discuss the risk each poses. For data 

tampering, in the case of either a PSK or a 

certificate, this would result in the endpoint’s 

credentials being misconfigured. This might 

prevent the endpoint from communicating 

properly on the system, or might cause the 

endpoint to communicate with other end-points 

that were not intended.

Information disclosure represents no risk to 

the certificate, as all the information is public. 

However, in the case of configuring a PSK, 

learning the value of the PSK has the potential 

to compromise the confidentiality and integrity 

of all future communications. This applies not 

just for the endpoint in question, but for any 

other endpoints that are using the same PSK 

as credentials. Spoofing of the target allows 

an attacker to provision an endpoint under 

their control with the credentials intended for 

the original target endpoint.

The two possible categories for default 

credentials are a Self-Signed Certificate and 

a Vendor Certificate. Each of these options 

provide different guarantees for the level of risk. 

To truly analyze the risk mitigation provided 

by each of these options, one would need to 

understand actual implementation. However, 

a few general conclusions can be made. The 

mitigations each of these options provide, as 

well as other considerations, are detailed in the 

following sections.

Self-Signed Certificate

A Self-Signed Certificate is certainly the 

simpler of the two options, and in this simplicity lies 

the greatest benefit of the Self-Signed Certificate. 

No product PKI is necessary to be created and 

maintained, and no hardware-based secure key 

storage is necessary for the product. These are 

things that generally cannot be feasibly done in a 

field update.
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However, a product can relatively easily 

generate a Self-Signed Certificate via a field 

update. Furthermore, beyond the cost of 

storing data (on the order of a few kilobytes of 

memory), there is very little additional cost to 

implementing this beyond the general (D)TLS 

library.

Although the Self-Signed Certificate brings 

many benefits in the form of simplicity and 

low cost, it does have some drawbacks. The 

Self-Signed Certificate does little to protect 

against the spoofing case. A Self-Signed 

Certificate can be easily spoofed (as one 

can be generated by any attacker). Without 

out of band checking there is no guarantee 

of certificate authenticity, and therefore no 

guarantee that the connection is established 

with the intended device.

However, if the connection is indeed established 

using the intended device’s Self-Signed 

Certificate then that connection does provide 

some security benefits. Assuming a cipher suite 

is chosen which includes confidentiality, then 

this would be an effective mitigation against 

information disclosure     (as well as data 

tampering). Note that this is predicated on the 

successful establishment of a TLS connection 

using the intended Self-Signed Certificate. Put 

another way, the large weakness here is with 

the initial connection establishment, as an 

attacker could replace the intended Self-Signed 

Certificate with one under his/her control, 

in which case all security benefits on that 

connection are lost.

Vendor Certificates

In contrast to a Self-Signed 

Certificate, the Vendor Certificate 

adds some level of complexity to the product 

implementing it. The two main areas of 

complexity introduced by Vendor Certificates 

are a product level PKI and secure key storage. 

Strictly speaking, neither of these is absolutely 

necessary for the implementation of Vendor 

Certificates. However, these aspects help 

significantly to realize the benefits of Vendor 

Certificates. A product level PKI is necessary 

for providing the signing services that sign 

the Vendor Certificates. There are many 

Figure 3: Certificate Interception 

Client DeviceAttacker’s
Certificate

Self-Signed
Certificate

Attacker

The Attacker intercepts the Device’s 
Self-Signed Certificate and inserts the 

Attacker’s (also Self-Signed) Certificate. 
This action is not detectable by the Client 

without some out of band checking.
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considerations for this, such as scale, availability, security, etc. Different products/organizations 

will have different needs in this area, therefore it is not possible to describe a product level PKI that 

would be appropriate for all use cases. However, in general setting up a PKI in a moderate to large 

organization is not trivial, in terms of cost, effort, and complexity. One important area of consideration 

is around the protection of the signing keys; if the signing key is compromised then the PKI essentially 

loses its value. Therefore, threat modeling and risk assessment activities should be undertaken to 

guide the level of protection necessary.

The other aspect of Vendor Certificates that merits discussion is the secure key storage. Whereas the 

product level PKI was around the keys and services for signing Vendor Certificates, the secure key 

storage is around the protection of each product’s private key (which corresponds to the public key 

present in the Vendor Certificate). Protection of this key is important because the ability to use it allows 

an attacker to impersonate the product. Again, there are a wide range of solutions that can be applied 

here, from simple data obfuscation to robust hardware mechanisms. What solution is implemented 

depends on many factors that are outside the scope of this document (but also should undergo threat 

modeling and risk assessment activities to drive the decision). In summary, implementing Vendor 

Certificates will certainly add cost and complexity to a product.

In many ways Vendor Certificates are susceptible to the same risks and threats as a Self-Signed 

Certificate. However, Vendor Certificates do offer a clear advantage in this area: their authenticity can 

be verified by anyone with the proper verification key. That is, the spoofing attack described with the 

Self-Signed Certificates changes. If the client verifies the authenticity of the device’s Vendor Certificate, 

then it is no longer possible for this spoofing attack to occur. However, this benefit comes with some 

caveats:

1. The client must know a priori the public key used to verify Vendor Certificates. This means 

the client may need to maintain a list of several keys from several different vendors. These keys 

are all public information, so it is more a matter of building this knowledge into the client 

Cipher suite requirements as mandated by the specification.

2. Compromising any Vendor Certificate breaks this scheme. If an attacker is able to compromise 

any Vendor Certificate of a trusted vendor, then it can be used to spoof the device’s valid Vendor 

Certificate. That is, this scheme is only as good as the weakest Vendor Certificate trusted by the client. 

This implies that any vendors participating should implement a robust PKI as well as robust secure 

key storage, as both of these are likely compromise points.

Note that similar to the Self-Signed Certificate, once a Vendor Certificate has been used to 
establish a TLS session, then that session will benefit from all of the normal TLS protection 
mechanisms.

Although somewhat outside the scope of CIP Security, it is useful to note that there can be other 
benefits of Vendor Certificates. These certificates allow for authenticity checks on a given product and 
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can be used to prevent cloned products (as a clone would presumably not have access to the PKI 
needed to create a valid Vendor Certificate). Furthermore, Vendor Certificates can be used to provide 
authenticity and non-repudiation of data produced by a given product (via cryptographic signing). 
Depending on the product’s use cases this might be a useful feature to include, and could help to 
justify the cost of implementing Vendor Certificates.

Vendor Certificates and Self-Signed Certificates are both viable options for default credentials. Vendor 
Certificates do provide some additional security benefits, especially in terms of the added difficulty 
of spoofing the certificate used to establish an initial TLS connection, yet at the cost of increased 
complexity. Another important area of discussion revolves around a system that uses both Vendor 
Certificates and Self-Signed Certificates. In this case the “weakest link” of the system in the Self-Signed 
Certificates; therefore, the benefits of the Vendor Certificates are vastly reduced or even lost. 

As the system will need to accept a Self-Signed Certificate, then that is the lowest acceptable security 
level, and therefore can be used to launch spoofing attacks as described. Despite this, Vendor 
Certificates can bring additional benefits outside of CIP Security, and should still be considered for 
usage. Any decision on which implementation is used should be made through careful consideration 
of requirements, as well as threats and risks on a given product. The information here can and 
should be used as a basis to start the discussion around the costs and benefits to each solution, but 
ultimately vendors must decide what makes the most sense for their given products.

Connection Origination
An EtherNet/IP network will be more exposed to attack when non-secure devices are allowed 

to exist on the same network as secure devices. However, it is also recognized that the rate of 

adoption of CIP Security amongst device suppliers will vary over time. Further, end users may 

choose to continue with certain non-secure legacy devices after secure scanners are installed.

In Chapter 1 of CIP Security (Volume 8) it specifies the following: Devices that support CIP 
Security must still be able to interoperate with devices that do not support CIP Security, on the 
same network. It should be a matter of end user configuration to allow or disallow such a mix 
of devices on the network. When mixing devices with secure and non-secure communications, 
it is the end user’s responsibility to manage the device and network configuration 
appropriately. The user may need to provide additional controls such as firewalls or physical 
security means.

In the hybrid world where non-secure devices will coexist on a network, the Originator of 
communications (Scanner) must “know” the security related communication types of its 
targets. Therefore, it will be incumbent upon the scanner device vendor to offer a mechanism 
to differentiate both secure and non-secure communications with devices on the EtherNet/IP 
network. This section of the paper is intended for scanner device implementers.

As a matter of course, vendors will develop configuration tools to accommodate the complexities 
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of CIP security configuration. Using vendor 
specific configuration tools may be the preferred 
mechanism to identify connection types.

The CIP defined Connection Configuration Object 
(CoCo) provides a standardized method to create, 
configure, and control CIP connections. To specify 
a “security” connection, include the (D)TLS port 
in the connection path attribute (6) of a CoCo 
instance. For example, an “unsecure” connection 
would have a connection path of “192.168.10.10”, 
while a “secure” connection would have a 
connection path of “192.168.10.10:2221”.

Debugging/Testing
Understanding TLS connection problems can 

sometimes be difficult, especially when it’s not 

clear what messages are actually being sent 

and received. However, since CIP Security over 

EtherNet/IP uses an identical application layer 

with just minor deviations in the communication 

compared to EtherNet/IP, the messages 

communicated should be known. For the 

same reason, it’s unlikely that there will be any 

larger issues with the application layer data 

communicated. And in the cases where there are 

issues with the EtherNet/IP application data or 

communications it’s better, if possible, to debug 

this without running EtherNet/IP on top of TLS.

When running EtherNet/IP the traffic can easily 

be captured and decoded with Wireshark using 

the correct infrastructure devices. When running 

CIP Security over EtherNet/IP it’s still possible 

to capture and see the traffic in Wireshark, but 

naturally it’s not possible to decode the traffic 

and see the exact contents since it might be 

encrypted. There are however some things 

that should be done to help ease debugging 

issues when running CIP Security over EtherNet/

IP. One option is only use NULL encryption cipher 

suites, and thus only use authentication-only 

communication. Volume 8 defines three (D)TLS 

certificate cipher suites, one each for RAS, ECC, and 

PSK with NULL encryption. When using one of those 

cipher suites the data won’t be encrypted, thus the 

data can be decoded using Wireshark.

In the cases when it’s not possible to change 

the cipher suite, i.e. in a real installation, it’s 

still possible to decode the actual traffic. This 

is accomplished by providing Wireshark with 

the private key, and naturally if this is in a 

real installation this isn’t possible for security 

reasons. Also, it’s worth mentioning that 

Wireshark cannot decrypt Diffie Helleman cipher 

suites. These are cipher suites with DH in their 

name; among the cipher suites that Volume 

8 defines only three are non Diffie Helleman 

cipher suites.

The most likely issues that need to be debugged are 

the initial communication and the TLS handshake. 

There are many different things that initially can go 

wrong with the TLS handshake when starting a new 

development and porting the (D)TLS library for the 

first time. The TLS handshake can easily be captured 

and analyzed using Wireshark since it is not 

encrypted. One tool that’s handy with doing initial 

tests and debugging is OpenSSL. OpenSSL comes 

with a command line client, this command 

line client can be used to perform just the TLS 

handshake. This is accomplished by issuing 

something like:

$ openssl s_client -connect <host ip>:2221



A Practical Guide for CIP Security Device Developers 20

This command in conjunction with Wireshark can be really useful during initial development. It’s 
also possible to provide the OpenSSL command line client with real certificates and keys doing 
something like:

$ openssl s_client -connect <host ip>:2221 –cert certandkey.pem –key certandkey.pem

Doing this it is possible to perform the full TLS handshake and test out that the certificate and key 
handling works correctly. This is useful when testing and verifying the CIP Security object and its 
interaction to the (D)TLS library.

The OpenSSL command line tool can also be used to test and debug other things. It provides options 
to test protocol support making it possible to verify that, for example, only TLS 1.2 is supported. There 
are also options to test out server-side cipher suite support. This is useful for testing out and verifying 
that the (D)TLS library has been correctly configured and setup to support the required cipher suites.

Another tool that is useful to verify the protocol support and implemented cipher suites in the 
server is nmap. This command can be used to list all cipher suites and supported protocols. 
This is accomplished with the following command line:

$ nmap --script ssl-enum-ciphers -p 2221 <host ip>

Performance Considerations
Adding CIP Security to a product is associated with a cost regarding high performance requirements 

on the processing unit of the product. Before actually implementing and testing CIP Security it’s 

impossible to tell if an existing product can handle the performance degradation that TLS adds to CIP 

Security over EtherNet/IP. Running CIP Security over EtherNet/IP can be done on almost any processing 

unit but on smaller low end 8-bit microprocessors the product would likely end up being far too slow 

to be considered usable. 

However, many products (probably the majority) that have been developed in the last several years are 

built using 32-bit microprocessors. These are also most likely to be the products in which CIP Security is 

supported. Those devices are most likely capable of handling the performance degradation that comes 

with TLS and CIP Security over EtherNet/IP. It’s impossible to provide any rule of thumb on whether a 

certain processing unit will be capable of handling the addition of CIP Security. The reason being that 

there are many factors that vary and influence the overall performance requirements. 

Some of those factors are: the compiler being used and how well it can optimize the code, the 

performance and the bandwidth between the processing unit and the memory, how well the existing 

TCP/IP and EtherNet/IP stack perform, how well the TLS library used performs on the platform being 
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used, if the processing unit has hardware 

accelerators for the cryptographic primitives, 

and if the compiler and TLS library are capable of 

making use of those. Besides this there are other 

factors that may affect the overall performance, 

such as which development tools and which 

specific platform were used. Many of those items 

can be overcome and worked around to make 

the overall product perform better.

There are some specific things that are of 

interest when considering the performance, the 

connection startup, and the data flow during 

the connection. These are things that can be 

optimized in different ways and may need work 

to create a usable and well working product.

During the connection startup the TLS handshake 

takes place. This is when the two endpoints in the 

communication negotiate the details of which 

encryption algorithm and cryptographic keys to 

use before the first byte of data is transmitted. 

Also during this time the two endpoints are 

authenticated which is done using public-key 

cryptography. This is a computationally heavy 

process that requires a lot of processing power 

from both sides in the communication. 

During the data flow, i.e. primarily class 0/1 

communication, two things impact the data 

latency: bulk encryption and message integrity. 

For the bulk data encryption this can be disabled 

by the end user by selecting one of the NULL 

encryption cipher suites. This however provides 

no confidentiality, but in many applications that’s 

an acceptable tradeoff. For the message integrity 

part, which is a hash function, it can in many 

cases be optimized. The optimization can be 

done either in C or using an assembly-language 

optimized implementation.

In many processing units there are dedicated 

cryptographic hardware accelerators. 

Those hardware accelerators can provide 

functionality to assist the calculation of the 

different cryptographic primitives used for 
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TLS. The hardware assisted support varies a lot and has to be looked at closely when choosing a 

processing unit for a new product. Some processing units provide hardware acceleration for all 

the cryptographic primitives, such as hash-functions, symmetric key algorithms, and public key 

algorithms – both Elliptic Curve and RSA. In those cases it’s possible to offload the main processing 

unit a lot and achieve near line speed cryptography for both bulk data encryption and message 

integrity. 

Using hardware assisted cryptography naturally comes with a higher per unit cost. But considering 

the importance of CIP Security this is probably a good thing to consider when designing new 

products. Many silicon vendors offer pin compatible processing units with and without hardware 

assisted cryptography engines, thus it’s possible to add the hardware assisted option later on and 

release this as a new updated product with higher and better capabilities. This can be done without 

having to redesign the hardware, but just by mounting a different part during manufacturing. This is 

discussed further in the next section, “Hardware Architecture Considerations”.

Hardware Architecture Considerations
For CIP Security there are three main areas in which hardware may be particularly beneficial:

 ▪ Hardware that provides secure key storage

 ▪ Hardware that provides cryptographic acceleration

 ▪ Hardware that provides entropy generation

These hardware components are not required for CIP Security, but it is likely that many 

products would benefit from this additional hardware. Each of these is discussed in more 

detail within this section. Note that a single piece of hardware may perform more than one 

function; these functions would not necessarily need to be implemented as three separate 

hardware solutions. No matter what hardware is selected, there are some issues that need to 

be addressed regardless of the functionality included in the hardware:

 ▪ Trust boundaries: Some hardware is within a processor, some is on a printed 

circuit board (PCB), and some is easily removable (as in on a USB stick). Which is 

chosen depends on use case as well as the boundary of trust.

 ▪ Performance: Depending on the type of countermeasures employed and the underlying 

technology, hardware based secure key storage can reduce overall system performance. It 

is important to understand if the performance is acceptable for the given system.

 ▪ Capabilities: The key storage hardware may only support a limited number of algorithms 

and/or keys. The CIP Security spec limits what must be supported, but it might be 
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desirable to have other algorithms for both future usage and other uses within a product.

 ▪ Cost: Including extra hardware on a product is certainly not free, an organization will need 

to decide what cost they are willing to pay to have the extra capabilities given by secure 

storage hardware.

 ▪ Contention: More than one part of the system may need to use a given hardware 

resource. Mechanisms for dealing with this are an important consideration, whether 

they be hardware-based, software-based, or some combination thereof.

Beyond these general issues, there are considerations specific to each hardware function:

Secure Key Storage Hardware
As discussed in the section on secure identity, if a product implements a Vendor Certificate then 

secure key storage is necessary to protect the private key associated with this certificate. Although 

software based options are available for this, hardware generally provides a more robust protection. 

Hardware based key storage is useful beyond just protecting the key associated with the vendor 

certificate. Keys associated with the certificate sent to a device by a user (for CIP Security) can also 

be protected by hardware based secure key storage. Best practices denote that the key is generated 

by the device and the private portion of the key never leaves the device. Hardware based 

secure key storage allows a device to achieve this for the keys associated with (D)TLS 

communications. Furthermore, many devices have other uses for protecting data, of course 

hardware based secure key storage may be used to protect other data beyond that associated with (D)

TLS communications.

Cryptographic Acceleration Hardware
CIP Security involves a significant amount of cryptographic operations on communications packets, 

which of course results in a performance impact. However, a product that includes specialized 

hardware for cryptographic acceleration can reduce or even eliminate the burden of these 

cryptographic operations on the main processor. There are two essential categories of cryptographic 

operations that are needed in CIP Security. One is the public key, or asymmetric operations. These are 

generally done during connection handshaking; examples include RSA, ECC, Diffie Hellman, etc. The 

other are symmetric operations, which are generally during the lifetime of the connection 

(once the handshaking is complete).

Examples include AES, SHA, etc. Depending on the needs of the device, hardware can be used to assist 

either or both of these operations. Note that in general, the asymmetric operations take longer and 

place a higher burden on the system. However, as these are mainly done as part of the connection 

handshake their impact is limited. The symmetric operations are generally faster, but occur much more 

often as there is at least one operation done on every packet that is sent or received. Throughput and 

latency targets are of course product specific, but hardware can be used to help achieve these targets. 

The following flowchart can aid in the decision-making process around what type of cryptographic 

accelerators to use:
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Figure 4: Hardware Cryptography Decision Flow-Chart
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Entropy Generation 
Hardware

Another important area for hardware assistance 

is entropy generation. If possible, using a hard-

ware based source for randomness is generally 

the best option. As such, when considering what 

hardware to include in a product a hardware 

based random number generator should cer-

tainly be kept in mind. More discussion on this is 

given below in the Entropy Sources section. 

Entropy Sources
True Random 
Number Generators
Generation and management of 

cryptographically strong entropy is essential for 

the security of (D)TLS sessions. The CIP Security 

specification mentions that hardware based 

entropy sources, or True Random Number 

Generators, are to be preferred over any software 

based sources. Therefore, it is ideal if a dedicated 

piece of hardware for entropy generation can 

be placed on the product. Even more ideal is 

for that hardware to include countermeasure 

protections such that the entropy source is well 

protected, even in the case of other parts of the 

system being compromised by an attacker. Keys 

generated by this hardware should stay within 

the hardware for the key’s lifetime.

Furthermore, the hardware should be designed 

such that it is compliant with well-known 

standards for entropy generation (such as NIST SP 

800-90). Although not generally necessary, more 

than one True Random Number Generator (TRNG) 

within a product may provide further security 

advantages through redundant mechanisms and 

diversity of sources, albeit at greater product cost.

Lack of Specialized Hardware
The above describes the ideal entropy 

generation support for CIP Security. 

However, it is recognized that this may 

not be feasible for all products. Some products 

may need to gather entropy from sources other 

than a True Random Number Generator. If this is 

the case it is still possible to gather entropy on a 

product (although maybe not at the same quality 

as a True Random Number Generator). This 

section will provide some general guidelines for 

gathering entropy on such a product.

Use Physical Sources

All products run (at some point) on some sort 
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of hardware. Hardware is necessarily a physical 

entity, subject to the laws and constraints of 

physics. As such, there is a degree of randomness 

and entropy to hardware. Inspect the system 

for hardware which may exhibit some form of 

randomness. Likely areas of this include oscillator 

drift, RAM decay, and various monitoring/

diagnostic circuitry (for example a temperature 

monitor). Generally, the higher the resolution 

these sources are, the more randomness they 

will exhibit (for example, a temperature monitor 

that reports in degrees Celsius to more than one 

decimal point).

Combine Sources

The more physical sources that can be 

combined generally yields better entropy, 

unless a second source degrades the entropy 

of the other more high quality sources. This 

also provides a diversity of input; even if an 

attacker compromises one entropy source 

to behave in a predictable manner the other 

sources can still provide entropy such that 

the product functions properly and robustly. 

Furthermore, some sources may be slower 

to generate high quality entropy than others. 

With more than one source used, this allows 

entropy to be available without being subject 

to the limitations of the slowest source.

Test Sources

It is important to run tests that give a measure 

of the quality of the entropy. NIST SP 800-90 B 

provides extensive tests for entropy sources. 

All sources should be tested to determine if 

there are enough suitable sources for 

the product. Of course what constitutes a 

suitable source is dependent on the product’s 

security posture, although general guidance is 

given within the NIST publication.

Cipher Suites
One integral part of the TLS handshake is when 

the client provides the server with a list of its 

supported cipher suites. The server selects one of 

the offered cipher suites that will be used during 

this connection. If no acceptable cipher suites 

are presented to the server, the TLS handshake 

will fail and the connection will be closed. Once 

the cipher suite has been agreed on and the 

connection has been established, the cipher suite 

insures the privacy, authentication, and integrity 

for the data that passes between the client and 

server over the (D)TLS session (connection).

The cipher suite is what determines the 

level of security for the (D)TLS session. 

Some cipher suites even provide weak 

security and should not be used. For this 

reason it’s essential that the correct cipher 

suites are used and it’s of the highest 

importance to be careful in the cipher suites 

offered and accepted. The cipher suites 

defined by CIP Security for EtherNet/IP 

should be considered reasonable in 

terms of providing security.

Since the cipher suite determines the level of 

strength in the cryptography algorithms used, 

they also highly impact the performance of the 

data flow on the (D)TLS session. Thus higher 

cryptographic strength picked by using a 

different cipher suite might degrade the packets 

per second a device is capable of producing and 

consuming. For authentication and key exchange 

the cipher suite defines the asymmetric algorithm 

used. From the cipher suites defined by CIP 
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Security for EtherNet/IP this could be RSA or Elliptic Curve. RSA is generally more used and widely 

deployed than Elliptic Curve. Elliptic Curve on the other hand offers the same or better security with 

smaller key sizes. As a consequence of this the performance using Elliptic Curve can be higher.

The bulk data encryption in CIP Security for EtherNet/IP, when enabled, relies on AES. AES 

is a standard for encryption and it contains a lot of variations. Though this standard is what’s 

adopted by the US government and now used worldwide. What’s defined for CIP Security is 

considered providing reasonable security for confidentiality.

The data integrity is provided by HMAC and in the case for CIP Security for EtherNet/IP SHA-1 or SHA-2. 

Both SHA-1 and SHA-2 are accepted by NIST and considered to provide  enough security.

Summary of Cipher Suits Used by CIP Security for EtherNet/IP

Cipher Suite Description

TLS_RSA_WITH_NULL_SHA256 RSA for key exchange; null encryption; 
SHA256 for message integrity. Encryption is 
not provided.

TLS_RSA_WITH_AES_128_CBC_
SHA256

RSA for key exchange. AES 128 for message 
encryption, SHA256 for message integrity.

TLS_RSA_WITH_AES_256_CBC_
SHA256

RSA for key exchange. AES 256 for 
message encryption, SHA256 for 
message integrity.

TLS_ECDHE_ECDSA_WITH_NULL_
SHA

ECDHE_ECDSA for key exchange; null 
encryption; SHA1 for message integrity. 
Encryption is not provided.

TLS_ECDHE_ECDSA_WITH_AES_128_
CBC_SHA256

ECDHE_ECDSA for key exchange. AES 
128 for message encryption, SHA256 for 
message integrity.

TLS_ECDHE_ECDSA_WITH_AES_256_
CBC_SHA384

ECDHE_ECDSA for key exchange. AES 
256 for message encryption, SHA256 for 
message integrity.

TLS_ECDHE_PSK_WITH_NULL_
SHA256

ECDHE in conjunction with PSK for key 
exchange; null encryption; SHA256 for 
message integrity. Encryption is not 
provided.

TLS_ECDHE_PSK_WITH_AES_128_
CBC_SHA256

ECDHE in conjunction with PSK for 
key exchange. AES 128 for message 
encryption, SHA256 for message 
integrity.
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NIST Cryptography Strengths

The following table (included from NIST SP 800-57: Recommendation for Key Management) 

gives general guidance on the strength of cryptographic keys based on their key length. 

Obviously longer keys provide better security, yet what algorithm is used is also relevant to 

the overall strength.

Considerations for System Time
As a part of a X.509 v3 certificate there’s a field named Validity which contains two dates, 

named notBefore and notAfter. The validity period for a certificate is the time from notBefore 

through notAfter, inclusive. This period is set when the certificate is generated and outside 

of this period of time, the certificate is invalid.

In many of the control applications and systems controlled by EtherNet/IP there’s no need for 

a global system time. Generally the controller’s notion of time is sufficient, and there’s no need 

for a wider notion of time in the slave nodes. For this reason, most of the embedded systems on 

which EtherNet/IP products are built today have no notion of the global system time or a real time 

clock (RTC). Even though a CIP interface to IEEE 1588, Precision Clock Synchronization Protocol 

for Networked Measurement and Control Systems, is defined only niche EtherNet/IP products 

implement this for use in special applications. We can expect that the number of EtherNet/IP 

products implementing IEEE 1588 will increase over time and thus also the number of devices that 

will have a global notion of time.

Security
Strength

Symmetric
key
algorithms

FFC (e.g., 
DSA, D-H)

IFC
(e.g., RSA)

ECC (e.g., 
ECDSA)

≤ 80 2TDEA21 L = 1024
N = 160

k = 1024 f = 160-223

112 3TDEA L = 2048
N = 224

k = 2048 f = 224-255

128 AES-128 L = 3072
N = 256

k = 3072 f = 256-383

192 AES-192 L = 7680
N = 384

k = 7680 f = 384-511

256 AES-256 L = 15360
N = 512

k = 15360 f = 512+
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To make use of the validity in a X.509 v3 certificate, the EtherNet/IP device verifying the peer 

needs to be aware of the system time. Since the majority of EtherNet/IP devices don’t support 

this today there’s an attribute in the EtherNet/IP Security Object that allows the user to enable 

and disable the certificate expiration check. Furthermore, this attribute is by default set to 

disabled, meaning that the peer’s certificate expiration shall not be checked.

An EtherNet/IP device that implements IEEE 1588 or NTP to obtain the system time can 

enable the option to allow for the certificate expiration check. That the certificate’s validity is 

checked is preferable to making sure that old and expired certificates are used.

It should be noted that IEEE 1588 doesn’t include any form of secure authentication 

mechanisms. Although recent versions of NTP provide for the possibility of authentication, in 

practice that’s not used. Most systems trust unauthenticated NTP replies to set the system 

clock. This mean that a Man-In-The-Middle attacker can control a device’s clock, and by 

doing so violate the security properties for TLS.

Lately, initiatives have been done to develop secure alternatives to NTP. Google is funding a 

project developing a secure time protocol called roughtime. The protocol aims to provide a 

rough time synchronization in a secure way. The “rough” time synchronization means that it’s 

not providing a precise and perfect time synchronization, rather it provides a synchronization 

within 10 seconds of the correct time, which is more than enough for use with security. 

Roughtime is a simple and light weight protocol that potentially could become the open 

secure alternative to NTP.

In the future when there’s a secure and widespread alternative to NTP, which possibly could 

be roughtime, CIP Security for EtherNet/IP should probably standardize on that. And at some 

point, we recommend that as a suggested supported protocol for all devices implementing 

CIP Security for EtherNet/IP.
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