
Security in Embedded Systems

This whitepaper gives an introduction to your software

development team on how to achieve a certain level of

security in embedded systems.

Embedded Office, M. Riegel

2022‑04‑26

Security in Embedded Systems 2022‑04‑26

Contents

1 Security in Embedded Systems 2
1.1 Threat Modeling . 2

1.1.1 IEC 62443 Security Levels . 3
1.1.2 IEC 62443 Security Requirements . 4
1.1.3 Security Zones . 4

1.2 Secure Components . 5
1.2.1 Interface Contracts . 5
1.2.2 Enforce Expectations . 5
1.2.3 Communication Protocol Verification . 6
1.2.4 Isolate Components . 6
1.2.5 Security Checklist . 6
1.2.6 Cryptographic Algorithms . 6
1.2.7 System Configuration . 7
1.2.8 System Logging . 7

1.3 Secure Deployment . 8
1.3.1 IT Environment . 8
1.3.2 Software Transmission . 8

1.4 Active Maintenance . 9
1.5 Secure Update and Secure Boot . 9

1.5.1 Secure Update . 10
1.5.2 Secure Boot . 10

2 Conclusion 12

3 Appendix ‑ Threat Awareness 13
3.1 Message Forgery . 13
3.2 Replay Attack . 13
3.3 Denial of Service Through Division by Zero . 13
3.4 Information Loss Through Buffer Over‑Read . 14
3.5 Remote Code Execution Through Buffer Overflow . 14
3.6 Timing Attack Against RSA Implementation . 14
3.7 Deliberate Power Off . 15
3.8 Abuse Non‑Standard Encoding . 15

4 Embedded Office Profile 16
4.1 About the Author . 16
4.2 Contact . 16

© 2022 by Embedded Office. All rights reserved. 1

Security in Embedded Systems 2022‑04‑26

1 Security in Embedded Systems

In a controlled environment, preventing accidental misuse and hardware faults was enough to
achieve safe behavior. When an unrecoverable state is detected, the system can enter a state with
limited or no functionality and is still considered safe.

In an uncontrolled environment, various forms of sabotage could impact the system’s safety or avail‑
ability. Preventing those is only possible by considering security at each step of the lifecycle:

1. ThreadModeling ‑ While designing, the product owner teammust identify the security require‑
ments.

2. Secure Components ‑ The software developersmust implement the security requirements cor‑
rectly during implementation. In addition, the developers must implement all other require‑
ments so that they do not add vulnerabilities to the system.

3. Secure Deployment ‑ Whenever a company transfers software (e.g., from supplier to manufac‑
turer), the development teammust ensure integrity and authenticity.

4. ActiveMaintenance ‑ During the system’s lifetime, the productmanufacturermust take and fix
all discovered weaknesses in any component.

5. Secure Update and Boot ‑ When updating the system, the product manufacturer must ensure
the integrity and authenticity of the new software.

1.1 Threat Modeling

The first step to achieving a secure system is identifying the assets or values that a system provides.
The product owner team then use threat modeling to analyze how an attacker can threaten those
values. Threat modeling should be integrated into the design process and done at all abstraction
levels. See Appendix Threat Awareness for some example threats.

© 2022 by Embedded Office. All rights reserved. 2

Security in Embedded Systems 2022‑04‑26

When specifying the high‑level requirements, software architects also identify abstract threats. These
threats will lead to additional requirements to mitigate those threats. This process is integrated in
each design step accordingly.

Values that many embedded systems have to protect:

• System Safety: Most types of attacks can impact the safety of a system.
• System Availability: If attackers can shut down the system, the system becomes useless to the
customer.

• Business Secrets: If attackers have access to the firmware, they can extract included trade se‑
crets.

• Legal Compliance: If attackers can cause the system to violate laws (send spam emails, spy on
people), this will cause legal repercussions for the producer.

• Company Reputation: A malfunction of the system could reflect poorly on the producer.

After identifying the values of our system, the product owner team need to estimate the costs and
resources an attacker is willing to invest in attacking those values. With this information, the team
can define the required level of security that the product shall achieve. From this level of security, the
developers can derive security requirements to mitigate risks.

1.1.1 IEC 62443 Security Levels

To classify the level of security a component achieves, the IEC 62443 defines 5 Security Levels (SL):

• Security Level 0: No special requirement or protection is required.

• Security Level 1: Protection against unintentional or accidental misuse.

• Security Level 2: Protection against intentional misuse by simple means with few resources,
general skills, and lowmotivation.

• Security Level 3: Protection against intentionalmisuse by sophisticatedmeanswithmoderate
resources, system‑specific knowledge, andmoderate motivation.

• Security Level 4: Protection against intentional misuse using sophisticated means with exten‑
sive resources, system‑specific knowledge, and high motivation.

Whendeveloping a systemaccording to Functional Safety standards, the security level SL‑1 is covered
without further activities.

The terms “few”, “moderate” and “high” aren’t well defined for higher security levels. However, a
common understanding for the security levels is:

© 2022 by Embedded Office. All rights reserved. 3

Security in Embedded Systems 2022‑04‑26

• SL‑2 protects against a hobbyist or angry former employee that consults publicly available in‑
formation about security and the system he wants to attack.

• SL‑3 protects against professional hackerswho intend tomakemoneybyblackmail or by selling
the exploit or the information they can extract.

• SL‑4protects against professional hacker groups that receiveextensive funding fromcompanies
or governments.

1.1.2 IEC 62443 Security Requirements

IEC 62443 lists functional requirements that a componentmust implement tomeet a security level.

For example, “A human that interacts with the system…”:

• SL‑1: must be identified and authenticated.

• SL‑2: must be uniquely identified and authenticated (no shared admin account).

• SL‑3: must be uniquely identified and authenticated viamulti‑factor authentication if accessing
from an untrusted network

• SL‑4: must be uniquely identified and authenticated via multi‑factor authentication on all net‑
works

1.1.3 Security Zones

Barriers that improve security (walls, doors, security guards, firewalls, virtualization technology, etc.)
divide a system into zones, and each zone achieves the lowest security level of any of its compo‑
nents.

While the IEC 62443 addresses operational technology security in automation and control systems,
the defined security levels are a valuable tool for any discussion about security.

Important

Security is not an attribute that a system either has or doesn’t have. Thinking of security as the
effort an attacker has to invest makes it comparable with the value that is to be protected.

This statement allows bringing security’s cost into the equation.

© 2022 by Embedded Office. All rights reserved. 4

Security in Embedded Systems 2022‑04‑26

1.2 Secure Components

The second step to achieving a secure system is to ensure that each component is designed and im‑
plemented securely and provides a secure interface to other components.

A componentdevelopermust follow the “securebydesign”principle by considering the requirements
of the applicable security standard and by incorporating the findings of the threat modeling at each
step of the design process.

1.2.1 Interface Contracts

Besides implementing the functional requirements of a component correctly, the security of an im‑
plementation relies on closely following the contract of all the other components used. Contract, in
this case, means the requirements that a component has of its callers. For example:

• Each memory block that is taken from a pool shall be returned to the same pool (the pool im‑
plementation does not track a block’s size or which pool it came from).

• The argument to a function shall not be zero (because the argument may be used in a division
without being checked).

• A function must shall be called from within a critical section (because it operates on a shared
data structure without using synchronization).

The reasons to place such restrictions on the caller can be many (performance, flexibility, portability,
…) and are not always documented. Nevertheless, the security of the system relies upon following
these requirements.

1.2.2 Enforce Expectations

When implementing a component, the software developers should increase the security by enforcing
those contracts where possible.

Because software can’t enforce all expectations by implementation, the component author must de‑
scribe the remaining unenforced expectations very clearly in the component’s documentation. Then,
the component users will follow these expectations in the rest of the system. The adherence to those

© 2022 by Embedded Office. All rights reserved. 5

Security in Embedded Systems 2022‑04‑26

contracts is checked using proper software development techniques like reviews, static analysis, test‑
ing, etc.

1.2.3 Communication Protocol Verification

Components implementing communication endpoints must ensure that all communication mes‑
sages comply with the agreed‑upon and documented protocol.

Specifically, this means verifying every type, value range, size, and encoding of every field of every
message, but also meta data like the number of messages per time, the sender address, and the ex‑
pected order of messages. The software must check enumerations against a safe list instead of ex‑
cluding items from a deny list. The reaction to protocol violations must itself be designed not to be
abusable.

1.2.4 Isolate Components

Sometimes theproductowner teamwants tousea component thatdoesnotmeet the level of security
of our system. In that case, it may be possible to execute that component in an isolated environment
with limited privileges.

One way to do this is to restrict memory access with an MPU and CPU time with a preemptive sched‑
uler. The damage from exploiting a weakness of the component is now limited to the isolated envi‑
ronment and does not affect the rest of the system.

1.2.5 Security Checklist

You can only consider a component as secure if it has a reasonably simple API that guides toward
correct usage. Such a component needs detailed, up‑to‑date documentation, including a security
manual: A checklist of every step that the user has to take to ensure the secure usage of the com‑
ponent (e.g., “run this validation”, “compile with these options” or “include your public key in this
constant”).

1.2.6 Cryptographic Algorithms

The security of a system most likely relies on some cryptographic operation, either encryp‑
tion/decryption or creation/validation of signatures and checksums. Those cryptographic operations
only provide security if:

• Well analyzed, standardized, state of the art algorithms are used, which are

© 2022 by Embedded Office. All rights reserved. 6

Security in Embedded Systems 2022‑04‑26

• expertly implemented and

• can be replaced by something more secure in the future.

Very few people have the knowledge and way of thinking to design good cryptographic algorithms.
New algorithms are published, and after crypto analysis experts have failed to break them for years,
they may be considered secure (for the time being).

Implementing an algorithm securely is almost as tricky. Countless hurdles have to be overcome, from
choosing the suitable padding scheme toprotecting against timing attacks or using the cryptographic
primitives in the correct mode.

Important

It is a widely accepted best practice to rely on the solution of a reputable third party.

1.2.7 System Configuration

If an embedded device has configuration parameters that influence its security, it should have secure
defaults. For example, a password‑protected interface should either have a unique password or force
the user to change the password before the device becomes operational.

Using a standard password and forcefully suggesting to the user for changing the password is typi‑
cally not enough. In the same way, the system design should enable encryption by default instead of
recommending the user to enable it later.

1.2.8 System Logging

Logging security‑relevant events is essential for auditing and analyzing security breaches but chal‑
lenging to implement. The integrity and confidentiality of the log may be a value that product owner
team need to analyze during threat modeling.

For analysis, it is desirable to include the largest amount of information anddetail in the log. However,
system resources constrain this decision. If it is not possible to ensure the log’s confidentiality, many
valuable pieces of information must be left out. Furthermore, laws like the GDPRmay forbid us from
logging some data, or require them to be deleted after a short period of time.

Another aspect the software developer must consider is log flooding. If attackers do something that
produces many log records, the less relevant information could overwrite the critical information.

© 2022 by Embedded Office. All rights reserved. 7

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Security in Embedded Systems 2022‑04‑26

1.3 Secure Deployment

The third step to achieving a secure system is to ensure that software, both compiled and in source,
and all documentation is only stored on secure media and transmitted over a secure channel.

Instead of trying to abuse a system’s weakness, an attacker might find it easier to create such a weak‑
ness by manipulating parts of the design, code, or binary before it is put on the embedded system.

1.3.1 IT Environment

Theattacker couldachieve this by accessingormanipulating thedeveloper’smachine, the serverwith
the source codemanagement system, or manipulating the software during transmission.

Measures to protect against manipulation of developer machines and servers:

• Proper IT rights management

• Regularly updating all used software

• Limiting physical access

• Security policies (e.g., employees have to lock their computer when not sitting in front of it)

1.3.2 Software Transmission

There are also various measures to prevent the software from being manipulated while it is transmit‑
ted:

• Establish a secure communication channel using PGP or X.509 certificates to sign (and encrypt)
all communication.

• In parallel to sending a delivery by email, communicate a cryptographically secure fingerprint
over a different channel (phone, letter, encrypted chat, etc.)

• Use a data transfer portal secured via TLS, X.509 certificates, authentication, and authorization.

© 2022 by Embedded Office. All rights reserved. 8

Security in Embedded Systems 2022‑04‑26

1.4 Active Maintenance

The fourth step to achieving a secure system is to ensure that all components stay secure when work‑
ing in operation.

Research on protocols, cryptography, and libraries could discover a significant weakness at any time,
and the product end‑users must update security systems as a consequence of this. Vendors of soft‑
ware components need to establish a system to inform all of their clients of discovered weaknesses.
Users of those libraries need to receive this information to create and deploy updates for the software
of their systems.

1.5 Secure Update and Secure Boot

The fifth step to achieving a secure system is to ensure the integrity and authenticity of all software
that runs on the system. In principle, this can be achieved by:

• Only the manufacturer can install software

• The update process is secure, or

• The boot process is secure.

When end‑user can’t update software, a system with a known vulnerability must be deactivated and
replaced by an improved device. While this could be a viable solution in some cases, the usual em‑
bedded systemwill need a way to get new firmware installed on it.

When an attacker gains physical access to the embedded system,manipulations in the contents of the
stored firmware are possible. In such a situation, the boot process needs to be secured. Otherwise,
a secure boot is unnecessary, and a secure update process is adequate. The secure update process
does not affect boot times and is adequate onmost embedded systems.

Both mechanisms have to ensure the application’s:

© 2022 by Embedded Office. All rights reserved. 9

Security in Embedded Systems 2022‑04‑26

• Firmware Authenticity: A trusted party created the firmware

• Firmware Integrity: No other party modified the firmware

• Firmware Age: The update must provide a newer firmware than the currently installed one
(preventing rollback to a more vulnerable version)

The product manufaturer should use a digital signature scheme to verify the firmware authenticity.
Message Authentication Codes (MAC) provide the same level of security but require a shared secret
between the software supplier and the embedded device. Multiple devices should not use the same
shared secret.

For the authentication scheme, the product needs a root of trust. This root of trust is a certificate or
public key that the embedded system can use to verify the signature of the firmware.

The authentication scheme typically checks the firmware integrity, too.

Finally, bootcodemust verify the age of the software. The bootcode stores the version number of the
firmware at a secure placewhere it can not bemanipulated. Then the bootcodewill not install or boot
a firmware with a lower version number.

1.5.1 Secure Update

With a Secure Update scheme the bootcode verifies the software once after receiving it in a trusted
storage (internal Flash) and then use it on subsequent boots.

The update process’s challenges are that the entire firmware often does not fit in RAM, and that the
attacker could cut the power, preventing security checks from running.

1.5.2 Secure Boot

With a Secure Boot scheme the bootcode loads and verifies the software on every reset. This allows
us to store the software on an insecure media (external Flash, SDCard, network server, etc.), which
makes updates simpler and the hardware cheaper to produce. It does, however, use more RAM and
spendmore time on each boot.

The bootcode still need some trusted storage for the firmware loader and the root of trust (the cryp‑
tographic key to verify the firmware).

After reset, the bootcode loads the firmware into RAM, checks authenticity, integrity and version, de‑
crypts it and executes it from RAM.

© 2022 by Embedded Office. All rights reserved. 10

Security in Embedded Systems 2022‑04‑26

If your application contains a security vulnerability which allows an attacker to modify the bootcode,
they can take complete control of the device. There are various forms of hardware support which can
protect against such an attack:

• One Time Programmable (OTP) boot records pin the checksum of the bootcode or trust anchor.

• HardwareSecurityModules (HSMs) arededicated coprocessorswith elevated rights and tamper
resistant storage.

• Cryptographic coprocessors with key stores allow using a key (for decryption or verification)
while preventing any system part from reading or changing it.

To leverage such hardware support, the bootcode is designed typically with a three stage boot pro‑
cess:

1. The hardware verifies the Boot Manager and Root of Trust

2. The Boot Manager verifies and executes the Boot Loader.

3. The Boot Loader loads, verifies, decrypts and executes the application.

The split of boot loader and boot manager is made, so the boot manager is as simple as possible.
Bugs are unlikely and it will only need to be updated under rare circumstances. The boot loader con‑
tains all the complexity of device drivers and network protocols, so bugs aremore likely. Because the
hardware is not involved, updating the boot loader is easier.

© 2022 by Embedded Office. All rights reserved. 11

Security in Embedded Systems 2022‑04‑26

2 Conclusion

We started our travel into the security of Embedded Systems by thinking about the question: “What is
security, and dowe need security in Embedded Systems?”. Further on, we have taken a rough view of
thedevelopmentprocess of EmbeddedSystemsbyhighlighting five aspects that improve the security
of the resulting product:

1. Thread Modeling

2. Secure Components

3. Secure Deployment

4. Active Maintenance and

5. Secure Update and Boot

Since each step can fill whole books, the focus of this paper is Secure Components to engage with
the interested Embedded Software developer. Finally, we append a small exemplary list of threats to
help your followingdiscussionofwhy security is significant for upcomingdevelopments in Embedded
Systems.

© 2022 by Embedded Office. All rights reserved. 12

Security in Embedded Systems 2022‑04‑26

3 Appendix ‑ Threat Awareness

Today, companies rarely train their embedded software developers in IT security. Unsurprisingly,
these developers have difficulty imagining the efforts the attackers now routinely take to detect and
exploitweaknesses in a system. Thismissing knowledge leads them tounderestimate the impact that
even seemingly trivial bugs can have. The discussed attacks below are not a complete checklist of at‑
tacks to protect from. Instead, the intention is to raise security awareness with these examples and
provide a helpful list as an argumentative aid. When talking with coworkers, managers, or customers
who can not imagine how an attacker could exploit your product, these examples might help.

3.1 Message Forgery

Anattackerwith access to the communication channel (like Ethernet, CAN, SPI, UART,…) forges a valid
message.

For example: in an electronic door lock systemwith a fingerprint reader, the attacker sends an “open
the door” message to the door lock instead of the fingerprint reader.

You prevent this attack by authenticating all messages. For example, the door lock checks an elec‑
tronic signature or message authentication code to ensure that the received message comes from
the fingerprint reader.

3.2 Replay Attack

The attacker records a valid message during an authorized fingerprint and injects that message at a
later point in time to open the door while none is looking.

Youmay try to prevent this attack with a simple message counter that constantly increases. The idea
is that the door lock detects the forged message if you receive a message counter with the same or
lower value than a previous one.

If the attacker can prevent the original message from reaching the receiver, the counter method no
longer works. Instead, each transmission could include a timestamp, and all systems need to have
synchronized clocks.

3.3 Denial of Service Through Division by Zero

Imagine a protocol definition with an integer field where the possible values exclude zero.

The attacker sends a zero in such a protocol message.

© 2022 by Embedded Office. All rights reserved. 13

Security in Embedded Systems 2022‑04‑26

If you do not check the received value and use it in a division, the CPU triggers an exception. Then,
the system enters a safe state and stops responding.

3.4 Information Loss Through Buffer Over‑Read

In 2014 the Heartbleed bug (CVE‑2014‑0160) was found. To exploit it, an attacker sets a length field to
a higher number than the protocol allows in this situation.

A missing check in faulty OpenSSL implementations leads to reading and sending the attacker more
bytes from a buffer on the heap than the buffer was large. This additional data often leaked secret
keys in other objects on the heap to the attacker.

3.5 Remote Code Execution Through Buffer Overflow

The CPU stores the return address of a function call on the stack and works with a descending stack
(like ARM or x86).

Imagine a function is called and allocates a fixed‑sized communication buffer on the stack. The ad‑
dress of the communication buffer is always lower than that of the stored return address.

A faulty protocol implementation copies an incoming message to that buffer without validating the
length of themessage. As a result, if themessage length is larger than the allocated buffer, the return
address gets overwritten with data from themessage content.

The overwritten return address is loaded from the stack and executed when the function returns.
Then, through guesswork or analyzing the firmware, the attacker causes the CPU to execute the in‑
structions he sent.

3.6 Timing Attack Against RSA Implementation

Without details of the RSA encryption scheme, there is an easy‑to‑understand attack against poor
implementations of the private key operation (generating a signature or decrypting amessage). At its
core, there is an algorithm step where we raise the message data to the power of the private key:

m^k

(there are a lot of modulo operations that do not matter here)

The following algorithm efficiently implements this exponentiation:

© 2022 by Embedded Office. All rights reserved. 14

https://en.wikipedia.org/wiki/Heartbleed

Security in Embedded Systems 2022‑04‑26

x = 1
for every bit in k:

x = x * x
if bit:

x = x * m

The time that this operation takes to complete is directly proportional to the number of bits equal to
1 in the private key. An attacker could use this information when searching for the key.

3.7 Deliberate Power Off

An insecure update mechanism receives an update file, stores it in flash memory, and validates the
signature. If the signature is invalid, the update mechanism erases the flash memory again.

An attacker could cut off the power supply while the verification checks the signature, before the
update mechanism erases the flash memory. Then, on the next boot, the insecure software is exe‑
cuted.

3.8 Abuse Non‑Standard Encoding

In unicode, the forward‑slash (/) has the code point U+002F. In UTF‑8 it should be represented as the
single byte 0x2F. A naive UTF‑8 decoder might also decode the two‑byte sequence 0xC0 0xAF as
the same forward slash. This is called overlong encoding and decoders should not accept such a byte
sequence according to RFC 3629 (released in 2003, there were no such requirements in RFC 2269).

Imaginea systemthat serves some files froma file system. Only files fromonedirectorymaybeserved.
The file system expects filenames to be encoded using UTF‑8. In an attempt to reduce computation
time and software complexity, it does not check for overlong encoding.

To enforce that all requested files come froma specific directory, the communication endpoint rejects
all requests where the file name contains a forward‑slash. It does so by scanning for the byte 0x2F.
Any request which does not contain this byte is accepted.

Because the communication endpoint and the file system do not precisely agree on the API contract,
an attacker can use the byte sequence ‘0xC0 0xAF’ to sneak a slash past the protocol validation into
the file system and access any file on the filesystem.

A similar bug (CVE‑2008‑2938) was found in Apache Tomcat.

© 2022 by Embedded Office. All rights reserved. 15

Security in Embedded Systems 2022‑04‑26

4 Embedded Office Profile

Embedded Office was founded in 2003 in Germany, focusing on functional safety and industrial se‑
curity consulting. The engineers are certified experts in embedded software development for safety‑
critical systems. The unique Safety Mentoring service guarantees the success of software approvals
for use in products according to IEC 61508, ISO 26262, IEC 62304, EN 50128, or DO‑178C. Furthermore,
provided software components like the “Flexible Safety RTOS” and complete safety platform integra‑
tions are completing the service to minimize efforts for new projects in the safety and security do‑
main.

4.1 About the Author

Matthias Riegel is one of the safety and security experts at Embedded Office. Since 2015 he has been
workingonmany safety and security relatedprojects for our customers. In 2018Matthiaswas certified
as “Cyber Security Specialist” by TÜV Rheinland.

4.2 Contact

Embedded Office GmbH & Co. KG
Friedrich‑Ebert‑Str. 20/1
88239 Wangen
Germany

Website: https://www.embedded‑office.com

© 2022 by Embedded Office. All rights reserved. 16

https://www.embedded-office.com/?mtm_campaign=wp-security&mtm_source=web&mtm_medium=whitepaper

	Security in Embedded Systems
	Threat Modeling
	IEC 62443 Security Levels
	IEC 62443 Security Requirements
	Security Zones

	Secure Components
	Interface Contracts
	Enforce Expectations
	Communication Protocol Verification
	Isolate Components
	Security Checklist
	Cryptographic Algorithms
	System Configuration
	System Logging

	Secure Deployment
	IT Environment
	Software Transmission

	Active Maintenance
	Secure Update and Secure Boot
	Secure Update
	Secure Boot

	Conclusion
	Appendix - Threat Awareness
	Message Forgery
	Replay Attack
	Denial of Service Through Division by Zero
	Information Loss Through Buffer Over-Read
	Remote Code Execution Through Buffer Overflow
	Timing Attack Against RSA Implementation
	Deliberate Power Off
	Abuse Non-Standard Encoding

	Embedded Office Profile
	About the Author
	Contact

