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With recent advances in automation, software is no longer a bit-part contributor to electro-mechanical
systems but is now the underlying technology providing functional safety for products in many market
segments. The requirement for software functional safety has therefore become a critical topic in industrial
automation, transportation, nuclear energy generation and other markets. |[EC 61508:2010 “Functional
safety of electrical/electronic/programmable electronic safety-related systems” is widely accepted as a
reference standard. It also forms the basis for sector-specific standards.

Introduction

The IEC 61508 standard describes a risk-based approach for determining the SIL (Safety Integrity Level)
of safety instrumented functions. If computer system technology is to be effectively and safely exploited,
it is essential that the available guidance on these safety related aspects is adequate to allow the correct
decisions to be made.

It is recognised that there is a great variety of applications using Electrical/Electronic/Programmable
Electronic (E/E/PE) safety-related systems in a range of application sectors, covering a wide range of
complexity, hazard and risk potentials. The required safety measures for each particular application will be
dependent on many factors specific to it. The generic nature of IEC 61508 makes it an ideal “blank canvas”
for the seamless integration of these application dependent factors and hence the derivation of industry
and sector specific standards.

In many situations, safety is achieved by a number of systems which rely on many engineering disciplines,
including mechanical, hydraulic, pneumatic, electrical, electronic, and programmable electronic
technologies. Any safety strategy must therefore consider not only all the elements within an individual
system (for example sensors, controlling devices and actuators) but also all the safety-related subsystems
which contribute to the safety-related system as a whole. Therefore, although IEC 61508 is concerned with
E/E/PE safety-related systems, it also serves as a framework within which safety-related systems based on
other technologies may additionally be considered.

This white paper describes the key software development and verification process requirements of the
IEC 61508 standard and how automated tools such as the LDRA tool suite® and its component parts

can assist with meeting them. In general, it is laid out to reflect the flow of the V-model referenced by
the standard, but IEC 61508 uses sets of annexed tables to identify particular techniques to be applied.
These techniques often apply to different stages of the lifecycle, which makes them difficult to integrate
into the narrative illustrated by the “V” model especially when they are sub-referenced. For that reason,
descriptions of the annex B tables are held in an appendix.

Safety Integrity Levels

Embedded software developers will be primarily concerned with part 3 of IEC 61508:2010%, “Software
Requirements”. However, the level of effort required to complete each objective in the standard is
dependent on the Safety Integrity Level (or “SIL”) of the safety functions implemented by the system. The
derivation of the SILis covered in more detail in part 52 of the standard, “Examples of methods for the
determination of safety integrity levels”.

Annex A of that standard discusses the concept of “Necessary risk reduction”3 and describes it as being
“the reduction in risk that has to be achieved to meet the tolerable risk for a specific situation”. Tolerable
risk is dependent on such as the severity of injury, the number of people exposed to danger, and the
frequency and duration of that exposure. It is derived by taking due consideration of inputs such as legal
requirements, safety authority guidelines, and discussions with interested parties.

The standard goes on to define Safety Integrity as “... the probability of a safety-related system
satisfactorily performing the required safety functions under all the stated conditions within a stated
period of time”* and subdivides it into “Hardware Safety Integrity” and “Systematic Safety Integrity”. The
latter is the primary concern for software applications.

1 |EC 61508:2010-3, Functional safety of electrical/electronic/programmable electronic safety-related systems — Part 3: Software Requirements

2 |EC 61508:2010-5, Functional safety of electrical/electronic/programmable electronic safety-related
systems — Part 5: Examples of methods for the determination of safety integrity levels
3 |EC 61508:2010-5, Annex A, Section A.2, “Necessary risk reduction”

4 |EC 61508:2010-5, Annex A, Section A.4 - Safety Integrity
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The SIL assigned to each safety function therefore depends the probability of failure, which can be derived
in several different ways. The higher the probability of failure, the higher the SIL (from SIL 1 to SIL 4), and

the more demanding the overheads on software development to make the risk acceptable.

SIL Low (.igmand r!1ode: Nig.h.demend or contiuo.us mode:
average probability of failure on demand probability of dangerous failure per hour
1 2102t0< 10" 210°t0o <107
2 210310 <1072 2107to<10°
3 210%to <1073 2107 to < 107 (1 dangerous failure in 1140 years)
4 2105t0 <10 =107%to <108

Figure 1: Deriving the SIL of a safety function from the probability of failure

The Software Development Lifecycle

According to the introduction, IEC 61508 “... sets out a generic approach for all safety lifecycle activities
for systems comprised of electrical and/or electronic and/or programmable electronic (E/E/PE) elements
that are used to perform safety functions.” Figure 2 shows the V-model illustration from the standard,
superimposed with an illustration of how the LDRA tool suite and other complementary tools can be
applied within the process.

E/E/PE system Software safety Validation Validation Validated
Requirements s,afew |II. reqmrgmgnts testing I‘ software
Traceability | requirements specification
[ér[B‘mRanagenl'? specification Test Verification
. Dgtggg TBvision®
Polarion ALM
o O;eq\ F : Integration testing
MS V\/é);ccig Software (components,
E/E/PE system | <@ | architecture [& """~ "TTTToooooooes subsystems and
architecture Pg?gc:?:::::g'e

Software
system design

Integration
testing (module)

Model Based Integrated and Model
Deve|°p|fgﬁf“ Driven Testing
Rational TBvision®

Rhapsody Module
Mathworks Simulink e testing
Esterel SCADE Automated Unit Testing

TBrun®
LDRAunit®
TBeXtreme®

Static Analysis
Quality Metrics
Coding Standards Compliance

—» Output

----# Veification Coding

TBvision®
LDRArules® LDRAcover®
Programming standards
checking and metrication
TBvision®
LDRArules®

Figure 2: Mapping the capabilities of the LDRA tool suite and complementary tools to the |IEC 61508:2010
development lifecycle (the V-model)’

IEC 61508 is not only a stand-alone standard. It also forms the basis for complete, industry-specific
derivative standards such as ISO 26262° for the automotive industry, and is also frequently referenced
piecemeal when its generic objectives are applicable to more narrowly defined sectors. One such example
is the IEC 13849:2015 for control system software, which defers to the development cycle of IEC 61508 for
the most critical applications it describes.

Part 3 of IEC 61508, “Software Safety Lifecycle Requirements”, structures the development of the software
in defined phases and activities to reflect and subdivide the phases illustrated in this V-model diagram.
These are used as the basis for the layout of this white paper, and comprise:

5 Based on IEC 61508:2010-3 Figure 6 — Software systematic capability and the development lifecycle (the V-model)
6 1S0 26262:2011, Road vehicles — Functional safety
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Section 7.2 Software safety requirements specification
Section 7.3 Validation plan for software aspects of system safety
Section 7.4 Software design and development
Section 7.4.3 Requirements for software architecture design
Section 7.4.4 Requirements for support tools, including programming languages
Section 7.4.5 Requirements for detailed design and development —
software system design
Section 7.4.6 Requirements for code implementation
Section 7.4.7 Requirements for software module testing
Section 7.4.8 Requirements for software integration testing
Section 7.5 Programmable electronics integration (hardware and software)
Section 7.6 Software operation and modification procedures
Section 7.7 Software aspects of system safety validation
Section 7.8 Software modification
Section 7.9 Software verification
Section 8 Functional safety assessment

There are also 7 Annexes defined in IEC 61508:2010-3 which are referenced by the main body of the
standard. Annex A is discussed in the body of this white paper, and Annex B is considered in an appendix.

IEC 61508:2010-3 Section 7.2: “Software safety requirements specification”

The first phase illustrated in the IEC 61508:2010 V-model concerns the definition of a software safety
requirements specification. Section 7.2 highlights the objectives associated with the specification of
software safety requirements. These include the derivation of requirements for the software safety
functions, the software systematic capability, and the implementation of the required safety functions.

The V-modelillustrates the need for each step in the process to be traceable to the next, as implied by
the verification arrows during the lifecycle, and the validation step at its end. Bi-directional traceability
is specified as an explicit objective in the Annex A.1 table (Figure 3) which is typical of the tables used
extensively in the standard.

Achieving a format that lends itself to bi-directional traceability will help to achieve compliance with

the standard. Bigger projects, perhaps with contributors in geographically diverse locations, are likely

to benefit from an application lifecycle management tool such as IBM® Rational® DOORS®?, Siemens®
Polarion® PLM®8, or more generally, similar tools offering support for standard Requirements Interchange
Formats®. Smaller projects can cope admirably with carefully worded Microsoft® Word® or Microsoft® Excel®
documents, written to facilitate links up and down the development process model.

I

Semi-formal methods Table B.7 R
1b Formal methods B.2.2, - R R HR
C.2.4
Forward traceability between the system safety requirements and
2 the software safety requirements €211 = = b Lk
Backward traceability between the safety requirements and the
3 perceived safety needs €211 = = b Lk
4 Computer-aided specification tools to support appropriate B.2.4 R R HR  HR

techniques/measures above

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.

“--- The method has no recommendation for or against its usage for this SIL.

Figure 3: Copy of IEC 61508-3 Table A.1%°, with static analysis techniques supported by the LDRA static
analysis tools highlighted. Note the specific requirement for bi-directional traceability.

7 http://www-03.ibm.com/software/products/en/ratidoor

8 https://polarion.plm.automation.siemens.com/

9 http://www.omg.org/spec/ReqlF/

10 |EC 61508-3 Annex A Table A.1 - Software safety requirements specification
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Bi-Directional Traceability

It would be easy to dismiss the task of tracing between the development lifecycle phases as trivial, but their
combined effect on project management overhead can be significant.

For instance, consider an unexpected change of requirement imposed by a customer. What is impacted?
Which requirements? What elements of the code design? What code needs to be revised? And which parts of
the software will require re-testing?

The most effective way to ensure that the project is not thrown off course by such eventualities is to
maintain Bi-directional Traceability of Requirements® Figure 4). In this diagram, when requirements are
managed well, traceability can be established forwards from the outline requirements, through the detailed
requirements and on to the work products — and they can similarly be traced backwards. Such bi-directional
traceability helps determine that all source requirements have been completely addressed and that all
lower level requirements can be traced to a valid source, and that there is no spurious source code that is
surplus to requirements. Requirements traceability can also cover the relationships to other entities such as
intermediate and final work products, changes in design documentation, and test plans.

Forward Traceability Backward Traceability
R R
Outline Outline
Requirements Requirements
- @@ - @@
) T
Detailed Detailed
Requirements Requirements
E— E———
R R
Work Products Work Products
that Implement that Implement
the Requirements the Requirements
—— = - 7 e

Figure 4: An lllustration of the principles of Bi-directional Traceability

Requirements rarely remain unchanged throughout the lifetime of a project, and that can turn the
maintenance of a traceability matrix into an administrative nightmare. Furthermore, connected systems
extend that scenario into the maintenance phase, requiring revision whenever a vulnerability is exposed.

Automating the tracing of requirements alleviates this concern by automatically maintaining the connections
between the requirements, development, and testing artefacts and activities. Any changes in the associated
documents or software code are automatically highlighted such that any consequential re-testing can be
dealt with accordingly (Figure 5).

|E;| System Level Requirements |

13 Items
0 \erified
13 Unverified

0% Verified J

Ed High Level Tests {d High Level Requirem ents |

0% Verified 0% Verified ‘

34 Items 34 Items
0 verified 0 \erified
34 Unverified 34 Unverified

(&I Low Level Requi t ]1 b_[lowleveletsw
0% Verified ‘ 0% Verified ‘

58 Items 36 Items
0 \erified 0 \erified
58 Unverfied 36 Unverified

Figure 5: The Uniview graphic from the TBmanager® component of the LDRA tool suite, showing how the
relationships between tests and requirements can be configured

 http://www.westfallteam.com/Papers/Bidirectional _Requirements_Traceability.pdf Bidirectional Requirements Traceability, Linda Westfall
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Static analysis and bi-directional traceability

In general, static analysis tools provide a source of evidence that the standard’s objectives have been met
in the implemented code, and that the designers’ vision in meeting those objectives has been realized. For
example, IEC 61508:2010-7*2 Sections B.2 and C.2, “Requirements and detailed design” require the use

of data flow diagrams and decision/truth tables to represent the system design. These lend themselves

to verification by means of static analysis later in the lifecycle by means of “as implemented” data

flow diagrams (Figure 6), LCSA] (Linear Code Sequence and Jumps) truth tables, and MC/DC (Modified
Condition/Decision Coverage) test case analyses.

4 ¢ TunnelData::Dataln:GetData

> 8 Calls

4 () Parameters
() TunnelData:Tunnel * - pTunnel

4 = Member Variables
= Buffer - Char

4 (5 Global Constants
I NumSystemParams - Sint_32 TunnelData::Dataln::GetData
I NumZoneParams - Sint_32
I NumZones - Sint_32

TunnelData::SystemData: :InitialiseParams [l TunnelData: :Tunnel::InitialiseTunnel

P@ TunnelData::Zone: InitialiseZone

TunnelData::Cell::InitialiseCell

T

-
TunnelData::Lamp::GetMaximumLumens |l TunnelData::Lamp::InitialiseLamp [l TunnelData::Lamp::GetMinimumLumens Jll TunnelData::Cell::GetLampModel

Figure 6: Diagrammatic representations of control and data flow, generated from source code by the LDRA
tool suite, aid verification that software architectural design has been implemented correctly

The reports generated as products of these and other static analysis techniques can be linked to a
requirements traceability tool to automate bi-directional end-to-end traceability to and from the system
safety requirements and the software safety requirements. Figure 7 shows a fuller list of example IEC
61508 design objectives that can be confirmed to be correctly implemented in the application code using
static analysis.

IEC 61508:2010-3 Section 7.3: “Validation plan for software aspects of system safety”

This section of the standard is focused on the planning of when, where, how and by whom safety-
related verification and validation activities are to be carried out. It requires consideration of whether
these activities are to be manually or automatically implemented, but the more detailed definition of
requirements for the tools themselves are not considered until later in the lifecycle.

IEC 61508:2010-3 Section 7.4.3: “Requirements for software architecture design”

Table A.2 in the standard is focused on this “Requirements for software architecture design”

section. IEC 61508:2010-7 Sections B.2 “E/E/PE system design requirements specification”, C.2
“Requirements and detailed design”, and C.3 “Architecture design” specify where fault detection
techniques need to be implemented as part of the software architecture, such as fault detection, error
detection and failure assertion programming. These techniques are designed to highlight failures, thus
providing the basis for counter-measures in order to minimize their consequences.

2 |EC 61508:2010-7, Functional safety of electrical/electronic/programmable electronic safety-related
systems — Part 7: Overview of techniques and measures
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Static analysis techniques can be used to confirm that these sound design objectives are reflected in
the code. Examples include Structured Programming Verification (used to identify unstructured code
which may lead to erroneous behaviour of the application) and the generation of complexity metrics
such as Cyclomatic Complexity and Halstead’s metrics (used to help determine the software module
size, software complexity and the data flow information). This confirmation of implemented objectives
also reflects the need for bi-directional traceability as highlighted in IEC 61508:2010-7 Section C.2.11

“Traceability”.
IEC 61508 reference Assistance from LDRA tools
IEC 61508-3 “Table A.2 — Software design and Static and dynamic analysis can be used to
development — software architecture design - Fault | confirm validity of code implementing these
detection” and “Error detecting codes” design features
IEC 61508-3 “Table A.2 — Failure assertion Can be confirmed using unit and module testing,
programming” particularly negative testing

Can be confirmed by means of structural analysis

IEC 615083 “Table A.2 - Modular approach and its associated reports and charts

IEC 61508-3 “Table A.2 — Forward traceability

between the software safety requirements Requirements traceability tool to manage links
specification and software architecture” between requirements, objectives, personnel,
IEC 61508-3 “Table A.2 — Backward traceability source code and the other LDRA tools to maintain
between the software safety requirements traceability information in real time

specification and software architecture”

IEC 61508-3 “Table A.2 — Structured diagrammatic | Pertinent static analysis techniques including
methods” structured programming verification

IEC 61508-3 “Table A.2 — Semi-formal methods” Formal methods transfer the principles of
mathematical reasoning to the specification and
implementation of technical systems. In practical
terms, LDRA tools use static analysis of the
source code with respect to various programming
models (E.g. MISRA C), whilst the parser engine
mathematically analyses the structure and
provides analysis reports

IEC 61508-3 “Table A.2 — Formal design and
refinement methods”

IEC 61508-3 “Table A.3 — Strongly typed
programming language” and “Table A.3 —
Language subset”

LDRA tools provide code standards checking,
including MISRA rules

Figure 7: Examples of IEC 61508 design objectives that can be confirmed as implemented in the
application code through the application of LDRA tools

IEC 61508:2010-3 Section 7.4.4: “Requirements for support tools, including programming
languages”

This section discusses the selection of the programming language(s) to be used and the associated tool
chain for the development of that code, including verification and validation tools (section 7.4.4.2), static
code analysers, test coverage monitors and configuration management tools.

IEC 61508:2010-7 Section C.4.5 “Suitable programming languages” recommends that “The
programming language chosen should lead to an easily verifiable code with a minimum of effort and
facilitate program development, verification and maintenance.”

LDRA Ltd 8 Implementing IEC 61508:2010 with the LDRA tool suite®
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Features which make verification difficult and therefore should be
avoided are: Coding standards

There are many coding
standards each with differing

e Unconditional jumps excluding subroutine calls Attributes but nevertheless

* Recursion with strong similarities,
e Pointers, heaps or any type of dynamic variables or objects especially when referencing
e Interrupt handling at source code level the same language. The most
e Multiple entries or exits of loops, blocks or subprograms popular standards include:
e Implicit variable initialisation or declaration C
e Variant records and equivalence and MISRA C:1998
e Procedural parameters MISRA C:2004
MISRA C:2012/AMD1/ADD2
- . - - e SEICERTC
Static analysis techniques provide automated facilities to check
compliance with the programming standards such as MISRA CWE
and CERT C which are designed to prevent the introduction of C++
vulnerabilities or latent errors in source code. Such coding standards | pISRA C++:2008
usually explicitly disallow the use of the programming features JSF++ AV
identified above, and adherence to these coding standards can be HIC++
checked automatically (Figure 8). SE| CERT C4+
Java
CWE
CERT)
v @ TunnelData:Cell:Cell
Vv % Float/integer conversion without cast. Required 435S MISRA-C++:2008 5-0-5
¢ Float/integer conversion without cast. : (double and int): f Required 435S MISRA-C++:2008 5-0-5
¢ Float/integer conversion without cast. : (double and int): f <« NumLampTypes Required 435S MISRA-C++:2008 5-0-5
¢ Pointer subtraction not addressing one array. Required 438S MISRA-C++:2008 5-0-17
¢ Cast to an unrelated type. : (double* to igt*): (Sint 32 *) p_f Required 554 S MISRA-C++:2008 3-9-3,5-2-7
¢ Casting operation on a pointer. : (double* to't i " MISRA-C++:2008 5-2-7
¢ Useof Ctype cast. Standards Violation MISRA-C++:2008 5-2-4
¢ Casting operation to a pointer. : (double* to int*): ( Sint_32 MISRA-C++:2008 5-2-7

Figure 8: Adherence to coding standards guidelines can be checked automatically
by LDRA’s static analysis tools

Table A.3 from IEC 61508-3 Annex A references the need for “certified tools and translators”. That
implies detailed and thorough testing of those tools, which is a time consuming and costly process.

In most cases, the most cost effective approach is therefore to use a tool that is already approved for the
applied standard by an appropriate TUV certifying organization.

IEC 61508:2010-3 Section 7.4.5: “Requirements for detailed design and development -
software system design”

This section of the standard specify design and coding standard enforcement measures pertinent to the
source code.

Figure 9 is a reproduction of Table A.4 from Part 3 of the standard, which refers to the sections
“Requirements for detailed design and development” (7.4.5), “Requirements for code implementation”
(7.4.6) and C.2 of IEC 61508 (Part 7).

3 |EC 61508:2010-3 Annex A, Table A.3, Software design and development — support tools and programming language
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Structured methods ** C.2a
1b Semi-formal methods ** Table B.7 R HR HR HR
1¢c  Formal design and refinement methods ** Eézzz R R HR
2 Computer-aided design tools B.3.5 R R HR HR
3 Defensive programming C.2.5 --- R HR HR
Modular approach Table B.9 HR HR HR HR

. . C.2.6
5 Design and coding standards Table B.1 R HR HR HR
6 Structured programming C.2.7 HR HR HR HR

Use of trusted/verified software elements
7 (if available)

Forward traceability between the software
8 safety requirements specification and C.2.11 R R HR HR
software design

”HR” The method is highly recommended for this SIL.

“R” The method is recommended for this SIL.

“—~- The method has no recommendation for or against its usage for this SIL.

**  @roup 1, “Structured methods”. Use measure 1a only if 1b is not suited to the domain for SIL 3R4.

C.2.10 R HR HR HR

Figure 9: Copy of IEC 61508-3 Table A.4%, with techniques supported
by the LDRA static analysis tools highlighted

The software safety requirements require consideration of the following during the design and
development phase:

Completeness with respect to software safety requirements specification
Correctness with respect to software safety requirements specification
Freedom from intrinsic design faults

Simplicity and understandability

Predictability of behaviour

Verifiable and testable design

Fault tolerance / fault detection

Freedom from common cause failure

The “Completeness” and “Correctness” are both reflections of the overriding requirement for bi-
directional traceability, and that is most easily managed through the application of a requirements
traceability tool. The complexity of application code design can be controlled using static analysis to
generate industry standard metrics, and industrial coding standards including MISRA C:2012%,

MISRA C++:2008%, SEI CERT C*7, and JSF++ HR AV*® are designed to limit the use of constructs most likely
to introduce such as common cause failure and unpredictability.

IEC 61508:2010-3 Section 7.4.6: “Requirements for code implementation”

This is a short section, mostly consisting of an emphasis for the need for traceability. Best practise
dictates that static and dynamic analysis of the code is an ongoing process while the code is being
developed, and so the code implementation process is interwoven with module and integration testing,
as well as ongoing static analysis.

4 |EC 61508-3 Annex A Table A.4 — Software design and development — Detailed design

5 MISRA C:2012: Guidelines for use of the C language in critical systems, ISBN 978-906400-11-8 (PDF), March 2013

6 MISRA C++:2008 - Guidelines for the use of the C++ language in critical systems, ISBN 978-906400-04-0 (PDF), June 2008.

7 SEI CERT C Coding Standard, https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

8 JSF++ HR AV, JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS FOR THE SYSTEM DEVELOPMENT AND DEMONSTRATION
PROGRAM, Document Number 2RDUoooo1 Rev C, 2005
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IEC 61508:2010-3 Section 7.4.7: “Requirements for software module testing” and Section 7.4.8:
“Requirements for software integration testing”

e e -—_

Probabilistic testing C.5.1
. . . B.6.5
2 Dynamic analysis and testing Table B.2 R HR HR HR
3 Datarecording and analysis C.5.2 HR HR HR HR
B.5.1
4  Functional and black box testing B.5.2 HR HR HR HR
Table B.3
5  Performance testing Table B.6 R R HR HR
6  Model based testing C.5.27 R R HR HR
7 Interface testing C.5.3 R R HR HR
3 Test management and automation E - HR HR HR
tools
Forward traceability between the
software design specification and
9 the module and integration test C2.11 R R iR al
specifications
10 Formal verification C.5.12 R R

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---" The method has no recommendation for or against its usage for this SIL.

Figure 10: Copy of IEC 61508-3 Table A.5%, with techniques supported by the LDRA static analysis tools highlighted

Figure 10 is a reproduction of IEC 61508-3 Table A.5, which refers to IEC 61508-3 Section 7.4.7 “Software module
testing”, |IEC 61508-3 Section 7.4.8 “Requirements for software integration testing”, and |IEC 61508-7 Section C.5
“Verification and modification”. These sections identify methods designed to contribute to the achievement of
software safety, such as software module testing and software integration testing.

A combination of code review and software module testing verifies that a software module satisfies its associated
specification. Software module testing in particular lends itself well to several objectives specified in the standard:

e Completeness of testing with respect to the software design specification

e Correctness of testing with respect to the software design specification (successful completion)
e Repeatability

e Precisely defined testing configuration

Although module testing can be performed by writing custom code for the purpose, the use of a certified, proven
test tool is likely to be much more cost effective unless the code base is very small. Such a tool can automatically
generate test drivers and harnesses (wrapper code) with no extra coding or scripting required, enabling tests to be
easily and efficiently run on code units (Figure 11).

9 |EC 61508-3 Annex A Table A.5 — Software design and development -Software module testing and integration
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Figure 11: Performing requirement based unit-testing using the TBrun® component of the LDRA tool suite

These tests can be subsequently regressed, with clear maintenance tracking and seamless storage of test data and
results.

IEC 61508:2010-3 Section 7.5: “Programmable electronics integration (hardware and software)”

Technique/Measure Ref
1+ | 2] 3 | 4|
B.5.1
1 Functional and black box testing B.5.2 HR HR HR HR
Table B.3
2 Performance Testing Table B.6 R R HR HR

Forward traceability between the system and
software design requirements for hardware/
software integration and the hardware/software
integration test specifications

C.2.11 R R HR HR

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“--- The method has no recommendation for or against its usage for this SIL.

Figure 12: Copy of IEC 61508-3 Table A.6%°, with techniques supported by
the LDRA static analysis tools highlighted

It is necessary for the integrated software to be proven on the target programmable electronic hardware by means of a
number of specified test techniques. Depending on the SIL, these may include:

Functional Tests
e Black box tests, to check the dynamic behaviour under real functional conditions, which reveal failures
to meet the functional specification
e Thisincludes testing data from:
— Permissible ranges
Inadmissible ranges
The range limits
Extreme values
Combinations of the above classes

29 |EC 61508-3 Annex A Table A.6 - Programmable electronics integration (hardware and software)
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Function and call coverage can be supported by unit test, system test, or a combination of the two
operating in tandem (Figure 13). For instance, a preferred approach for a particular project might be

to use dynamic system test to generate coverage of most of the source code. That data could then be
complemented by coverage generated during unit tests designed to exercise code constructs which are
inaccessible during normal operation, such as defensive code.

Combined Coverage Results
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Figure 13: Examples of representations of structural coverage within the LDRA tool suite

To complement this structural coverage analysis, boundary values could be provided manually or
generated automatically (Figure 14) to check the permissible and inadmissible ranges.
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Figure 14: Using the TBrun and TBeXtreme® components of the LDRA tool suite to automatically
create boundary value tests
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IEC 61508:2010-3 Section 7.4.6: “Requirements for code implementation”

Aside from emphasizing the need for bi-directional traceability, this section is largely a stub, cross-
referencing other sections of the standard.

IEC 61508:2010-3 Section 7.7: “Software aspects of system safety validation”

Figure 15 is a reproduction of IEC 61508-3 Table A.7 from the standard, which refers to IEC 61508-3 Section
7.7 “Software aspects of system safety validation” and IEC 61508-7 Section C.2 “Requirements and
detailed design”. These sections specify the software aspects of system safety validation. These ensure
that the integrated system complies with the software safety requirements specification at the required
safety integrity level.

I T
e |

Probabilistic testing C.5.1
2 Process simulation C.5.18 R R HR HR
3 Modelling Table B.5 R R HR HR
B.5.1
4  Functional and black-box testing B.5.2 HR HR HR HR
Table B.3
Forward traceability between the
software safety requirements
> specification and the software safety Coe R R HR HR
validation plan
Backward traceability between the
6 software safety validation plan and Con1 R R HR HR

the software safety requirements
specification
”"HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---” The method has no recommendation for or against its usage for this SIL.

Figure 15: Copy of IEC 61508-3 Table A.7%, with techniques supported by the LDRA tool suite highlighted.

Functional and Black-Box testing can be used to check whether the functions of a system or program
behave as the specification dictates when executed in a prescribed environment according to established
criteria, and the associated configuration files can be stored and used for the automated regression
analysis to confirm ongoing adherence to the specified requirements.

Automated requirements traceability tools complement this by providing forward and backward
traceability between the software safety requirements specification and software safety validation plan.

IEC 61508:2010-3 Section 7.8: “Software modification”

Figure 16 is a reproduction of IEC 61508-3 Table A.8 from the standard, which refers to IEC 61508-3 Section
7.8 “Software modification” and IEC 61508-7 Section C.5 “Verification and modification”.

These sections specify the steps to be followed during the modification of software. They provide guidance
on the implementation of corrections, enhancements and adaptations of validated software, ensuring that
the adherence to IEC 61508 for the resulting modified system is not compromised.

> |EC 61508-3 Annex A Table A.7 — Software aspects of system validation
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e e

Impact analysis C.5.23
2  Reverify changed software module C.5.23 HR HR HR HR
3 Reverify affected software modules C.5.23 R HR HR HR
4a Revalidate complete system Table A.7 R HR HR
4b  Regression validation C.5.25 R HR HR HR
5 Software configuration management C.5.24 HR HR HR HR
Data recording and analysis C.5.2 HR HR HR HR

Forward traceability between the Software
safety requirements specification and

7 the software modification plan (including C2n R R HR HR
reverification and revalidation)
Backward traceability between the software

8 modification plan (including reverification Con R R HR HR

and revalidation) and the software safety

requirements specification

”HR” The method is highly recommended for this SIL.

“R“ The method is recommended for this SIL.

“---” The method has no recommendation for or against its usage for this SIL.

Figure 16: Copy of IEC 61508-3 Table A.8%2, with techniques and measures supported
by the LDRA tool suite highlighted

The following techniques and measures should be considered with regards to software modification:

Completeness of modification with respect to its requirements
Correctness of modification with respect to its requirements
Freedom from introduction of intrinsic design faults
Avoidance of unwanted behaviour

Verifiable and testable design

Regression testing and verification coverage

In this context, impact analysis is designed to determine whether a change or an enhancement to a software
system has affected its overall functionality, or has the potential to do so. There are three possible conclusions:

e Only the changed software module needs to be re-verified
e All affected software modules need to be re-verified, or
e The complete system needs to be re-verified

The level of re-verification required will be influenced by the number of software modules affected, the criticality
of the affected software modules, and the nature of the change.

The connected system — a new significance for system modification

With the advent of the connected device and the Internet of Things, system maintenance takes on a new
significance. For any connected systems, requirements don’t just change in an orderly manner during
development. They change without warning - whenever some smart Alec finds a new vulnerability, develops a
new hack, or compromises the system. And they keep on changing throughout the lifetime of the device.

For that reason, the ability of next-generation automated management and requirements traceability tools and
techniques to create relationships between requirements, code, static and dynamic analysis results, and unit-
and system-level tests is especially valuable for connected systems. Linking these elements already enables the
entire software development cycle to become traceable, making it easy for teams to identify problems and

22 |EC 61508-3 Annex A Table A.8 — Modification
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implement solutions faster and more cost effectively. But they are perhaps even more important after
product release, presenting a vital competitive advantage in the ability to respond quickly and effectively
whenever security is compromised.

Many software modifications will require changes to the existing software functionality — perhaps with
regards to additional utilities in the software. In such circumstances, it is important to ensure that any
changes made or additions to the software do not adversely affect the existing code.

A requirements traceability tool can help to alleviate this concern by automatically maintaining the
connections between the requirements, development, and testing artefacts and activities. In the example
shown in Figure 18, suppose that a change is proposed to the system requirement “Installation and
configuration”. The traceability established at development time between requirements, code and tests
mean that the tool can show which parts of the code are impacted by the proposed change, as highlighted
in the example.
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Figure 18: Identifying the impact of requirements change with the TBmanager component of the LDRA tool suite

In this scenario, the existing code as launched will also have undergone quality control measures in accordance
with the |IEC 61508 standard such as static analysis to assess whether coding standards have been met, and unit
tests to confirm functionality of each code module.
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Figure 19: Showing functions requiring retest with the TBmanager component
of the LDRA tool suite
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Figure 19 shows an example system which has been subject to a change request for the “Add products”
requirement. Those parts of the system which are potentially affected by the change are easily identified
by means of a red dot, whereas unaffected functions carry a green dot.

Regression Analysis feature can then be used to verify whether the newly introduced or modified modules
have only affected the functionality of the existing system as intended, or the complete system can be re-
validated.

IEC 61508:2010-3 Section 7.9: “Software verification”

Figure 20 is a reproduction of IEC 61508-3 Table A.g9 from the standard, which refers to IEC 61508-3 Section
7.9 “Software verification” and IEC 61508-7 Section C.2 “Requirements and detailed design”.

IEC 61508-3 Section 7.9 considers generic aspects of verification common to several safety lifecycle

phases.
Formal proof C.5.12
2 Animation of specification and design C.5.26 R R R R
. . B.6.4 HR
3 Static analysis Table B.8 R HR HR
. . . B.6.5 HR
4  Dynamic analysis and testing Table B.2 R HR HR
Forward traceability between the software HR
5 design specification and the software C.2.11 R R HR
verification (including data verification) plan
Backward traceability between the software HR
6 verification (including data verification) plan C.2.11 R R HR
and the software design specification
7  Offline numerical analysis C.2.13 R R HR HR
Software module testing and integration See Table A.5
Programmable electronics integration testing See Table A.6
Software system testing (validation) See Table A.7

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“--- The method has no recommendation for or against its usage for this SIL.

Figure 20: Copy of IEC 61508-3 Table A.9%, with techniques and measures supported
by the LDRA tool suite highlighted

Conclusions

With its many sections, clauses and sub-clauses, IEC 61508 may at first seem intimidating, and its system
of cross-referencing tables in annexes can make it difficult to follow. However, once broken down into
digestible pieces, its principles offer sound guidance in the establishment of a high quality software
development process - not only leading up to initial product release but into maintenance and beyond.
Such a process is paramount for the assurance of true reliability, quality, safety and effectiveness of
programmable electronic components. When supported by a complementary and comprehensive suite of
tools for analysis and testing, it can smooth the way for development teams to work together to effectively
develop and maintain large projects with confidence in their quality.

23 |EC 61508-3 Annex A Table A.9 — Software Verification
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IEC 61508 uses a set of tables to identify particular techniques to be applied. These techniques often
apply to different stages of the lifecycle which makes them difficult to integrate into the narrative
illustrated by the “V” model used by the standard, especially when they are sub-referenced — hence this
appendix.

Appendix: The Annex B tables

IEC 61508:2010-3 Annex B Table B.1: “Design and coding standards”

Referenced by table A.4

| osw |
I T S

Use of coding standard to reduce likelihood

of errors Seilor
2 No dynamic objects C.2.6.3 R HR HR HR
3a No dynamic variables C.2.6.3 R HR HR
3b (Cj);::n(:iihve:acrli(g;glezfthe installation of Yy R HR HR

Limited use of interrupts C.2.6.5 R R HR HR
5 Limited use of pointers C.2.6.6 R HR HR
6 Limited use of recursion C.2.6.7 R HR HR
. No unstructured control flow in programs in C2.6.2 R HR HR HR

higher level languages
8 No automatic type conversion C.2.6.2 R HR HR HR

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“-~-" The method has no recommendation for or against its usage for this SIL.

Figure 18: Copy of IEC 61508-3 Table B.1, with techniques and measures supported
by the LDRA tool suite highlighted

To reduce the likelihood of errors in the safety-related code, the use of an appropriate coding standard
is a recommended practice in IEC 61508. As illustrated previously, there are several to choose from
depending on the nature of the application, and on preference.

IEC 61508-7 Section C.2.6.2, “Coding Standards” recommends the use of a modular approach where
the software module size limit and software complexity metrics can be defined. It also recommends
the implementation of code understandability metrics, which can be generated by means of static
analysis.

It is also possible to statically check for the use of interrupts, pointers, recursion, and non-structured
control flow. Structured Programming Verification allows for the determining of unstructured parts of
the application code.
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IEC 61508:2010-3 Annex B Table B.2: “Dynamic analysis and testing”

Referenced by tables A.5 and A.9

s
BT

Test case execution from boundary value

analysis
2  Test case execution from error guessing C.5.5 R R R R
3  Test case execution from error seeding C.5.6 R R R

i Test case exgcutlon from model-based test = R R HR HR
case generation

5  Performance modelling C.5.20 R R R HR

6 Equ!valence classes and input partition E57 R R R HR
testing

- StrugtLirj\l test coverage (entry points) 5.8 HR HR HR HR
100 %

e Strugtﬂal test coverage (statements) 5.8 R HR HR HR
100 %

7¢  Structural test coverage (branches) 100 %** C.5.8 R R HR HR

- Structural test coverage (conditions, MC/DC) 58 R R R HR

100 %**
”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.

“--- The method has no recommendation for or against its usage for this SIL.
**  Where 100% coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate
explanation should be given.

Figure 19: Copy of IEC 61508-3 Table B.2, with techniques and measures supported
by the LDRA tool suite highlighted

IEC 61508-7 Section C.5.4, “Boundary value analysis” focuses upon the detection of software errors
occurring at parameter limits or boundaries. Using unit test, a range of input values and variable
boundary values can be provided and checked against the expected results, possibly exposing runtime
errors.

The same section also references error guessing, which also lends itself to unit test. Error guessing
involves the use of particular data combinations designed to show whether the code behaviour is error-
prone.

IEC 61508-7 Section C.5.7, “Equivalence classes and input partition testing” discusses means to test the
software adequately using a minimum of test data. Profile analysis and data set analysis can helps to
identify any redundancy.

IEC 61508-7 Section C.5.8, “Structure-based testing”, states: “Based on analysis of the program, a set of
input data is chosen so that a large (and often pre-specified target) percentage of the program code is
exercised. Measures of code coverage will vary as follows, depending upon the level of rigour required.
In all cases, 100 % of the selected coverage metric should be the aim. If it is not possible to achieve 100
% coverage, the reasons why 100 % cannot be achieved should be documented in the test report (for
example, defensive code which can only be entered if a hardware problem arises)”.
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Structural coverage requirements are classified according to SIL as follows:

SIL4  Structural test coverage (entry points) = 100 %
Structural test coverage (statements) = 100 %
Structural test coverage (branches) = 100 %
Structural test coverage (conditions, MC/DC) = 100 %

SIL3  Structural test coverage (entry points) = 100 %
Structural test coverage (statements) = 100 %
Structural test coverage (branches) = 100 %

SIL2  Structural test coverage (entry points) = 100 %
Structural test coverage (statements) = 100 %

SIL1  Structural test coverage (entry points) = 100 %

Dynamic Coverage Analysis can be used to achieve the required level of coverage for IEC 61508
compliance.

IEC 61508:2010-3 Annex B Table B.3: “Functional and Black-box testing”
Referenced by tables A.5, A.6 and A.7

BT T

Test case execution from cause consequence

B.6.6.2 R R

diagrams

5 Test case execution from model-based test case Cr R R HR HR
generation

3 Prototyping/animation C.5.17 R R

4 !Equwa}lence classes and input pa.trtltlon testing, C.5.7 R HR HR HR
including boundary value analysis C.5.4

5 Process simulation C.5.18 R R R R

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---" The method has no recommendation for or against its usage for this SIL.

Figure 20: Copy of IEC 61508-3 Table B.3, with techniques and measures supported
by the LDRA tool suite highlighted

This section outlines an approach to test case generation at the software system level, based only on the
system functional specification.

IEC 61508-7 Section C.5.27, “Model based testing (test case generation)”, discusses the automatic
generation of test cases from system models, and the generation of highly repeatable suite of test
data. Unit tests can be executed on code generated from modelling tools, and traceability to functional
requirements can be automatically maintained.

Software test and model based development

Static and dynamic facilities can be integrated with several different model based development tools,
such as IBM® Rational® Rhapsody®24, MathWorks® Simulink®, and ANSYS® SCADE Suite?. The
development phase itself involves the creation of the model in the usual way, with the integration
becoming more pertinent once source code has been auto generated from that model.

24 http://www-03.ibm.com/software/products/en/ratirhapfami-
25 https://uk.mathworks.com/products/simulink.html
26 http://www.ansys.com/products/embedded-software/ansys-scade-suite-
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Figure 21 illustrates how an integration with MathWorks Simulink can be deployed with the LDRA
tool suite. Design models are developed with Simulink and verified with Simulink tests. Then, code is
generated from Simulink, instrumented by the LDRA tool suite, and executed in Software In the Loop
(SIL or host), or Processor In the Loop (PIL or target) mode. Structural coverage is then collected and
structural coverage reports can be generated at the source code level by Simulink and by source code
dynamic analysis in tandem.

Simulink Simulink TBrun
Model Testing Generated Model test cases
Model Code In TBrun
Coverage SIL/PIL Mode | aqditional Tests
Mode Testing Target Testing
Code Coverage | code Coverage

O O O

Figure 21: Generating structural coverage data of auto generated code with MathWorks Simulink and the
LDRA tool suite, leveraging the TBrun component

Several other tests are available using an integration such as this. The generated source code can be
analysed statically to ensure compliance with an appropriate coding standard, such as MISRA C:2012
Appendix E?7. Additional dynamic testing can be performed at the source level, and requirements
based tests can be created to verify functionality and collate structural coverage. Test data can also be
imported from Simulink for efficiency.

Real time embedded systems based on auto generated code usually also include some level of
conventionally written code. Software for board support packages, interrupt handlers, drivers, and other
lower-level code is typically hand coded. Legacy code is almost always part of deployed systems. These
portions of the system can be verified using traditional methods alongside auto-generated code.

IEC 61508:2010-3 Annex B Table B.4: “Failure analysis”
Referenced by table A.10

T T

Cause consequence diagrams B.6.6.2
1b  Event tree analysis B.6.6.3 R R R R
2 Fault tree analysis B.6.6.5 R R R R
3 Software functional failure analysis B.6.6.4 R R R R

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---” The method has no recommendation for or against its usage for this SIL.

Figure 22: Copy of IEC 61508-3 Table B.4, for completeness

27 https://www.misra.org.uk/tabid/72/Default.aspx
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IEC 61508:2010-3 Annex B Table B.5: “Modelling”

Referenced by table A.7

e

Data flow diagrams

2a Finite state machines B.2.3.2 --- R HR HR
2b  Formal methods Eézzz R R HR
2c  Time Petri nets B.2.3.3 --- R HR HR
3 Performance modelling C.5.20 R HR HR HR
4 Prototyping/animation C.5.17 R R R R
5 Structure diagrams C.2.3 R R R HR

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“--- The method has no recommendation for or against its usage for this SIL.

Figure 23: Copy of IEC 61508-3 Table B.5, with techniques and measures supported
by the LDRA tool suite highlighted

IEC 61508-7 Section C.2.2, “Data flow diagrams” describes how data input is transformed to output,
with each stage in the diagram representing a distinct transformation. Call Graphs and data flow
graphs provide the required data flow information, and formal methods are used to generate provide
dependency information between each module.

IEC 61508:2010-3 Annex B Table B.6: “Performance testing”

Referenced by tables A.5 and A.6

T
R HR HR

1 Avalanche/stress testing C.5.21
2 Response timings and memory constraints C.5.22 HR HR HR HR
3 Performance requirements C.5.19 HR HR HR HR

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---” The method has no recommendation for or against its usage for this SIL.

Figure 24: Copy of IEC 61508-3 Table B.6, with techniques and measures supported
by the LDRA tool suite highlighted

IEC 61508-7 Section C.5.21, “Avalanche/stress testing” describes the use of tests that determine the
robustness of software beyond the limits of normal operation, which is particularly important for mission
critical software. It is related to the test regime required to achieve branch coverage, which necessarily
includes negative test variations where the software is supposed to fail in some way.

LDRA Ltd 23 Implementing IEC 61508:2010 with the LDRA tool suite®




LDRA

IEC 61508-7 Section C.5.22, “Response timing and memory constraints” specifies the use of timing
analysis, and unit test can be used to check the execution time of a specific unit of code or module.

IEC 61508:2010-3 Annex B Table B.7: “Semi-formal methods”

Referenced by tables A.1, A.2 and A.4

BT T

Logic/function block diagrams IEC 61131-3
2 Sequence diagrams IEC 61131-3 R R HR HR
3 Data flow diagrams C.2.2 R R R R
4a  Finite state machines/state transition diagrams B.2.3.2 R R HR HR
4b  Time Petri nets B.2.3.3 R R HR HR
5 Entity-relationship-attribute data models B.2.4.4 R R R R
6 Message sequence charts C.2.14 R R R R
7 Decision/truth tables C.6.1 R R R R
8 UML C.3.12 R R R R

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---” The method has no recommendation for or against its usage for this SIL.

Figure 25: Copy of IEC 61508-3 Table B.7, with techniques and measures supported
by the LDRA tool suite highlighted

Call Graphs and Flow Graphs graphically represent software function blocks, control flow paths, and
data flow information. Data flow diagrams document how data input is transformed to output, with each
stage in the diagram representing a distinct transformation. Annotated source code provides information
on how the data is transferred between each module.

Decision/Truth tables provide a clear and coherent specification and analysis of complex logical
combinations and relationships. This method uses two-dimensional tables to concisely describe logical
relationships between Boolean program variables. The MC/DC test case planner provides guidance in
the selection of appropriate test values with the aim of achieving 100% MC/DC coverage.
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IEC 61508:2010-3 Annex B Table B.8: “Static analysis”
Referenced by tables A.1, A.2 and A.4

R s
R HR HR

Boundary value analysis C.5.4
2 Checklists B.2.5 R R R R
3 Control flow analysis C.5.9 R HR HR HR
4  Data flow analysis C.5.10 R HR HR HR
5 Error guessing C.5.5 R R R R
6a Formal inspections, including specific criteria C.5.14 R R HR HR
6b  Walk-through (software) C.5.15 R R R R
7  Symbolic execution C.5.11 --- --- R R
8 Design review C.5.16 HR HR HR HR
9  Static analysis of run time error behaviour B.2.2,C.2.4 R R R HR
10  Worst-case execution time analysis C.5.20 R R R R

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---" The method has no recommendation for or against its usage for this SIL.

Figure 26: Copy of IEC 61508-3 Table B.8, with techniques and measures supported
by the LDRA tool suite highlighted

IEC 61508-7 Section B.2.2 and Section C.2.4, both called “Formal methods”, describe the static analysis
of run time behaviour. This analysis can reveal issues such as uninitialized local variables, the illegal
dereferencing of pointers, uninitialized pointers, uninitialized variables, the non-termination of loops,
and the non-termination of calls.

Formal inspection is a structured process performed by the peers of the person(s) responsible for the
creation or maintaining of the software in question. The purpose of formal inspection is to identify and
resolve defects such that the quality and reliability of the software is enhanced. Entry and exit criteria
should be defined based on the properties required for the software element, and static analysis can
play its part by providing information on those entry and exit criteria.

LDRA Ltd 25 Implementing IEC 61508:2010 with the LDRA tool suite®




LDRA

IEC 61508:2010-3 Annex B Table B.9: “Modular approach”
Referenced by table A.4

T

Software module size limit C.2.9
2 Software complexity control C.5.13 R R HR HR
3 Information hiding/encapsulation C.2.8 R HR HR HR
p Parameter number limit / fixed number of Fag R R R R
subprogram parameters
- One gntry/one exit point in subroutines and Cac HR HR HR HR
functions
6  Fully defined interface C.2.9 HR HR HR HR

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“---" The method has no recommendation for or against its usage for this SIL.

Figure 27: Copy of IEC 61508-3 Table B.9, with techniques and measures supported
by the LDRA tool suite highlighted

Static analysis can be used to derive a number of complexity metrics to provide a mechanism to control
complexity as specified. These include:

McCabe’s Cyclomatic Complexity
Essential Cyclomatic Complexity
Knots

Essential Knots

Nesting Level

Halstead’s Size Metrics
Unreachable Code / Dead Code
Infeasible Code

LCSA] Density

C++ 00 Metrics

Entry/Exit Points
Procedure/Interface
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